

Multifunctional Electronic Load PLZ-4W Series

Four different power ratings - $165 \mathrm{~W}, 330 \mathrm{~W}, 660 \mathrm{~W}$, and 1000 W - five models in total Support of 0-V input (PLZ164WA and PLZ664WA)
High-speed response supporting a maximum slew rate of $16 \mathrm{~A} / \mu \mathrm{s}$ (equivalent to $10 \mu \mathrm{~s}$ when converted to a rise time) Support of constant current, constant resistance, constant voltage, constant power, constant current + constant voltage, and constant resistance + constant voltage modes
Timer functions combined with time/voltage measurement functions enable battery discharge characteristic evaluations.
Booster units provide increased system capacity (PLZ1004W).
Features sequence and switching functions.
Provided with GPIB, RS232C, and USB 2.0 ports as standard.

CP pulse discharge for digital camera batteries
measurement of highly efficient switching power supplies

Actual load sequences for mobile phone charging circuits

Evaluation of low-voltage, high-current DC/DC converters for servers

Perfect for a wide range of testing applications

Evaluation of fuel cells and stacks

Performance evaluation of DC/DC converters for PDA terminals

For testing switching power supplies, batteries, DC/DC converters, and fuel cells!

> Multifunctional DC Electronic Load PLZ-4W Series Designed to satisfy demands for lower-voltage, higher-speed, and larger-capacity testing applications

The current trend in semiconductors is towards lower voltages and higher speeds. This trend places similar demands not only on the components of semiconductor power units, such as switching power supplies, batteries, and DC/DC converters, but also on the electronic loads used for testing. Research and development in the field of fuel cells, which are expected to become an eco-friendly source of energy, demands electronic loads that allow a current to flow even at 0 V , as well as load systems with expandable capacity for testing stacks of cells. The PLZ-4W Series of electronic loads has been developed to satisfy all these demands.

The PLZ-4W Series offers high-performance DC electronic loads capable of operating in six modes: constant current, constant resistance, constant voltage, constant power, constant current + constant voltage, and constant resistance + constant voltage.
In addition to offering high-speed response at a maximum slew rate of $16 \mathrm{~A} / \mathrm{\mu s}^{* 1}$ and a minimum setting resolution of $10 \mu \mathrm{~A}^{*} 2$, the system features a variety of functions including soft start, variable slew rate, a switching function, an ABC preset memory function, 100 setup memories, and a sequence function. What's more, timer functions combined with time/voltage measurement functions allow you to measure battery discharge characteristics.

Also provided is a master/slave parallel operation capability ${ }^{* 3}$ that makes it possible to expand the current and power capacities according to the output of the device under test. The PLZ1004W can handle up to 9 kW and 1800 A through the use of dedicated booster units (PLZ2004WB).

For communication, the system is provided with GPIB, RS232C, and USB 2.0 interfaces as standard. Each of these interfaces supports IEEE 488.2 as well as the Standard Commands for Programmable Instruments (SCPI), developed for testing and measuring instruments.

Merit of Ease of Use

Front and Rear Panels

Operation setting keys
These keys are used to set the basic value (current, conductance, voltage, or power), operation mode, range, slew rate, protection function, etc.

protection function, etc.

Speed-sensitive rotary knob
This rotary knob is used to set various values. You can switch between the coarse adjustment mode and fine adjustment mode by pressing the rotary knob. In fine adjustment (FINE) mode, the value changes at one-tenth of the rate applied in coarse adjustment mode. Rotating the rotary knob while holding down the SHIFT key changes the contrast of the display.

LOCAL/LOCK key
This key is used to switch to the local operation mode in which you can perform operations from the panels of the system, when the system is in remote control. Pressing this key while holding down the SHIFT key places the system in a lock state.
 operation keys These keys are used to perform setup memory and $A B C$ preset memory setting operations, sequence editing and execution, etc.

DC INPUT (front-panel load input terminal)
This terminal allows easy connection of this system with the device to be tested. The rear panel also has a load input terminal, which is connected to the one on the front panel in parallel.

LOAD I MON OUT terminal
This output terminal is used for current monitoring. Connect a voltmeter or oscilloscope to this terminal to conduct current monitoring.

Switching operation keys

These keys are used to set the switching
frequency, duty factor, time, level, and other values related to the switching operation.

TRIG OUT terminal

This terminal is used to output pulse signals during the sequence or switching operation.

EXT CONT

These variable resistors are used to adjust the full scale and offset values set for this system, in response to the values input from an external control source (voltage or resistance).

J1/J2 connectors

These connectors are used for the input and output of the signals intended to exert external control over this system using an external voltage, resistance, relay contact, etc. J 1 is for external control, and J 2 is for parallel operation.

DC INPUT

(rear-panel load input terminal)
This terminal is used to connect this system with the device to be tested. It is connected to the load input terminal on the front panel in parallel.

Support of 0-V Input and High-Speed Response

Basic Performance and Operations

Six operation modes

The system can operate in six modes - constant current, constant resistance, constant voltage, constant power, constant current + constant voltage, and constant resistance + constant voltage.

Equivalent circuit and operation in each mode
-Constant current mode(CC)

-Constant resistance mode(CR)

-Constant voltage mode(CV)

-Constant power mode(CP)

- Constant current+constant voltage mode(CC+CV)

- Constant resistance+constant voltage mode(CR+CV)

Support of 0-V input

PLZ164WA and PLZ664WA are 0-V input operating voltage models. This feature is indispensable for testing single-cell fuel cells. The continuing trend toward lower power consumption and semiconductor process miniaturization is driving semiconductor devices to operate on increasingly lower voltages. These models are suitable for evaluating such power supplies.

* This product detects a 'no-input' state when the input voltage is below about 0.3 V and when the input current is below about 1% of the range rating. Therefore, if the input voltage is raised gradually from 0 V , no current flows until the input voltage exceeds 0.3 V . If a current exceeding 1% of the range rating flows, it is possible to have a current flow at less than 0.3 V .
* PLZ164WA and PLZ664WA have bias supplies inside their chassis. In the case of a power supply in which a diode is arranged in the direction from the minus output to the plus output, such as a switching power supply, if the output of the power supply of the device under test is turned off with this system's load on, the current flows from the bias supply to the diode, generating a reverse connection alarm.

Variable slew rate

The slew rate determines the slope of change in the current when the set current needs to change sharply as in a transient response test. This system lets you set the current change rate per unit time as appropriate for the selected current range.

- Shift in the current waveform with the change in the slew rate
* Adequate slew rate performance is guaranteed as long as the change in the current remains within the 2%-to- 100% range of the rating. The maximum rise time is limited to $10 \mu \mathrm{~s}$. If the change in the current is small, the slew rate value may not be stored for the reason stated above.

High precision and high resolution

The built-in three-range configuration provides both wide dynamic range and high precision. The voltmeter, ammeter and wattmeter functions that display values using up to five digits each and a minimum setting resolution of $10 \mu \mathrm{~A}$ (for the PLZ164W/164WA L range) are implemented.

		Operating range	Setting resolution
Constant current mode	H range M range L range	0 A to 33 A 0 A to 3.3 A 0 A to 330 mA	1 mA 0.1 mA 0.01 mA
Constant resistance mode*	H range M range L range	$\begin{aligned} & 22 \mathrm{~S} \text { to } 400 \mu \mathrm{~S} \\ & 2.2 \mathrm{~S} \text { to } 40 \mu \mathrm{~S} \\ & 0.22 \mathrm{~S} \text { to } 4 \mu \mathrm{~S} \end{aligned}$	$\begin{aligned} & 400 \mu \mathrm{~S} \\ & 40 \mu \mathrm{~S} \end{aligned}$ $4 \mu \mathrm{~S}$
Constant voltage mode	H range L range	$\begin{aligned} & 1.5 \mathrm{~V} \text { to } 150 \mathrm{~V} \\ & 1.5 \mathrm{~V} \text { to } 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{mV} \\ & 1 \mathrm{mV} \end{aligned}$
Constant power mode	H range M range L range	16.5 W to 165 W 1.65 W to 16.5 W 0.165 W to 1.65 W	10 mW 1 mW 0.1 mW

*Conductance $[\mathrm{S}]$ = Input current $[\mathrm{A}] /$ Input voltage $[\mathrm{V}]=1 /$ Resistance $[\Omega]$

Support for Advanced Tests
 Control Functions and Operation Support Functions

Load onloff operations

In addition to the regular operations, the following types of load on/off operations are available. You can choose any of these operations as suitable for your operating environment.

- Start in the load on state
- Display of the elapsed load on time
- Auto load off after the elapse of the set time
- Load on/off control using relay and other external signals

Sequence function

Any sequence patterns can be stored in the built-in memory. The memory can hold up to 10 normal sequence programs plus one fast sequence program. Each normal sequence program can contain a maximum of 256 steps, with the fast sequence program consisting of up to 1024 steps. You can edit these programs on the large liquid crystal display (LCD) monitor. * Use the sequence creation software tool Wavy (see page XX).

Normal sequence

A different execution time can be assigned to each step individually. You can stop the execution of the sequence temporarily using PAUSE and remove the pause using an
 external trigger signal.

Fast sequence

Each step is executed at high speed. The high time resolution enables high-speed simulations. The fast sequence program can contain up to 1024 steps, which are executed at even intervals.

	Normal sequence	Fast sequence
Operation mode	CC, CR, CV, CP	CC, CR
Maximum number of steps	256	1024
Step execution time	1 ms to 999 h 59 min	$25 \mu \mathrm{~s}$ to 100 ms
Time resolution	$\begin{aligned} & 1 \mathrm{~ms}(1 \mathrm{~ms} \text { to } 1 \mathrm{~min}) \\ & 100 \mathrm{~ms}(1 \mathrm{~min} \text { to } 1 \mathrm{~h}) \\ & 1 \mathrm{~s}(1 \mathrm{~h} \text { to } 10 \mathrm{~h}) \\ & 10 \mathrm{~s}(10 \mathrm{~h} \text { to } 100 \mathrm{~h}) \\ & 1 \mathrm{~min}(100 \mathrm{~h} \text { to } 999 \mathrm{~h} 59 \mathrm{~min}) \end{aligned}$	$\begin{aligned} & 25 \mu \mathrm{~s}(25 \mu \mathrm{~s} \text { to } 100 \mu \mathrm{~s}) \\ & 100 \mu \mathrm{~s}(100 \mu \mathrm{~s} \text { to } 100 \mathrm{~ms}) \end{aligned}$

Remote sensing function

The remote sensing function compensates for voltage drops in load lines. It is used to set resistance and voltage values correctly and to make accurate voltage and power measurements. Particularly, the function improves the transitional characteristics in constant voltage, constant power and constant resistance modes, leading to stable operation.
(The maximum voltage that can be compensated for is 2 V for one way.)

Switching function

In constant current and constant resistance modes, switching operations can be performed at up to 20 kHz .
The switching setting parameters such as the switching level, switching frequency, and duty factor can be changed even while the load is on.

[Setting parameters] Operation mode: CC and CR Duty factor: 5% to 95%, in steps of 0.1% Frequency setting range: 1 Hz to 20 kHz Frequency setting resolution: 0.1 Hz for 1 Hz to $10 \mathrm{~Hz} ; 1 \mathrm{~Hz}$ for 10 Hz to $100 \mathrm{~Hz} ; 10 \mathrm{~Hz}$ for 100 Hz to 1 $\mathrm{kHz} ; 100 \mathrm{~Hz}$ for 1 kHz to $20 \mathrm{kHz} \quad$ Frequency setting accuracy: $\pm(0.5 \%$ of set) * The minimum time interval for setting the duty factor is $10 \mu \mathrm{~s}$.

Soft start function

The soft start function allows the rise time of the current to be changed in constant current or constant resistance mode after the output voltage of the device being tested has risen. Since the rise time for the system can be changed according to the output-voltage rise time for the device being tested, you can conduct tests under highly realistic load conditions.
(The soft start time can be selected from the following options $-1,2,5,10,20,50$, 100 , and 200 ms .)

Short-circuit function

When the system is operating in constant current or constant resistance mode, this function allows you to instantaneously switch to the maximum current value (in constant current mode) or to the minimum resistance value (in constant resistance mode) of the range. Also, since a contact signal is output to the J1 connector, you can short-circuit the output of the device under test by driving the external relay or other element.

Elapsed time display and auto load off timer

Combining four functions - elapsed time display, under voltage protection (UVP), load off voltage display, and auto load off timer makes it possible to perform two types of measurements that are

©xample of the load off voltage display useful in battery discharge tests - measurement of the time elapsed from the start of discharge until the final voltage is detected and measurement of the closed circuit voltage after the specified time elapses from the start of discharge.

This function configures the settings related to the system operation, communication environment, etc. These settings are stored in the system memory, and called when the power is turned on.

- Number of parallel operated load units and master/slave settings
- Load on/off operation at power-up
- Key lock on/off operation at power-up
- GPIB, RS232C, and USB selection
- GPIB address
- RS232C communication speed
- Operation mode in which the external reference voltage input is used
- Polarity of load on external control (low/high)

Response speed setting

This system operates by monitoring the input current and voltage values and exerting negative feedback control over those values. You can set the response speed of this negative feedback control as shown below. This function is available in constant current mode (constant current + constant voltage mode) and constant resistance mode (constant resistance + constant voltage mode). If the system operation is unstable or problematic in some other way because of the length of the load line or the size of the loop, you can stabilize the operation by setting the response speed to a lower value.

1/1 : Normal response speed
$1 / 2$: Twice slower than the normal speed
1/5: Five times slower than the normal speed
1/10: 10 times slower than the normal speed

ABC preset memories

Three memories A, B, and C are provided for each range in each mode, and the set values can be saved. The stored set values can be called freely even while the load is on and saved again.
In constant current + constant voltage and constant resistance + constant voltage modes, the constant current and constant voltage memories and the constant resistance and constant voltage memories can be called and saved, respectively.

Setup memories

Up to 100 of the set values listed below can be saved in the setup memories.

- Operation mode (CC, CR, CV, and CP/+CV)
- Current, resistance, voltage, and power values recorded when saved
- Range setting
- Slew rate
- Switching frequency, duty factor, level, and time
- protection settings
- ABC preset memory data

Diverse protection functions

The system features the following protection functions - over current protection (OCP), over power protection (OPP), over voltage protection (OVP), under voltage protection (UVP), over heat protection (OHP), and reverse connection detection (REV). Also available is the alarm input detection function, which turns off the load in response to the input of the external TTL signal.

Sample program

Free sample programs for the PLZ-4W Series are available from our web site (www.kikusui.co.jp). These downloadable sample programs include the utility software (MEMcopy) that lets you read and save setup memory data in a floppy disk or other type of medium, sequence editing software (StepEdit), and VisualBasic applications for measurement data collection and GUI remote control and their source code (VB samples). Install these software programs and the USB driver to a Windows-running personal computer equipped with a USB port (the system is compatible with Windows 98 and later). Then, connect the PC to the PLZ-4W Series electronic load system using a USB cable, and you can readily get started with measurements.

Meeting Your System Upgrade Needs

Capacity Expansion Functions and External Control Functions

* Large-capacity systems of 9 kW or more, rack-mounted systems, and other types of systems are supported. For more information, please contact our sales representatives.

Booster (PLZ2004WB)

To offer a large capacity at low cost, PLZ2004WB is available as a booster unit for the PLZ1004W system. Up to four booster units can be connected in parallel with one PLZ1004W unit serving as the master unit (max. 9 kW, 1800 A). To connect these units requires the use of optional cables one PC02-PLZ-4W parallel cable and as many PC01-PLZ-4W parallel cables as the number of booster units to be connected.

OBooster PLZ2004WB

■ Operating voltage: 1.5 to 150 V ■ Current: 400 A ■ Power: 2000 W - Input power supply voltage range: 100 to 240 VAC (90 to 250 VAC), single-phase connection ■ Power consumption: Max. 200 VA

- Dimensions: 429.5 (455) $\mathrm{mm} \mathrm{W} \times 128$ (150) $\mathrm{mm} \mathrm{H} \times 550(600) \mathrm{mm} \mathrm{D}$
- Weight: Approx. 23 kg

*PLZ2004WB is a dedicated booster for PLZ1004W.
It cannot be used with any other model.

Parallel operation

Without using boosters, you can connect up to five units of the same model in parallel, including the master unit (max. 5 $k W, 1000$ A). In the parallel connection configuration, one control master operates with one or more slave units, enabling you to control the entire system and view its data on the master unit's panel. To connect the units requires the use of as many optional parallel cables (PC01-PLZ-4W) as the number of units to be connected.

ONumber of parallel connected units and capacities (maximum currents and maximum voltages)

Slave unit	1 unit	2 units	3 units	4 units
PLZ164W/	66 A	99 A	132 A	165 A
PLZ164WA	330 W	495 W	660 W	825 W
PLZ334W	132 A	198 A	264 A	330 A
	660 W	990 W	1320 W	1650 W
PLZ664WA	264 A	396 A	528 A	660 A
	1320 W	1980 W	2640 W	3300 W
PLZ1004W	400 A	600 A	800 A	1000 A
	2000 W	3000 W	4000 W	5000 W

External controls

External controls are provided by means of the inputs from the GPIB, RS232C, USB, and analog interfaces.
The GPIB, RS232C, and USB interfaces comply with the standards listed below. Using the external analog inputs, you can perform such operations as external voltage - or resistance-based control, load on/off, current range switching and input current monitor output.

-Supported interface standards

- IEEE Std 488.2-1992
- IEEE Std 488.1-1987
- TIA/EIA-232F
- SCPI 1999.0
- USB 2.0 (Full Speed)
- USBTMC 1.0

-Measuring instrument driver

You can download the measuring instrument driver (freeware) from our Web site. Please visit the site and make full use of it.
(www.kikusui.co.jp)

- Voltage- or resistance-based external analog controls

Control method	Operation mode	Explanation
Voltage	CC, CP, CV	A change of 0 to 10 V causes a change of 0% to 100% of the rated range value.
	CR	A change of 0 to 10 V causes a change ranging from the maximum to minimum values of the range.
Resistance (proportional)	CC, CP, CV	A change of 0Ω to $10 \mathrm{k} \Omega$ causes a change of 0% to 100% of the rated range value.
	CR	A change of 0Ω to $10 \mathrm{k} \Omega$ causes a change ranging from the maximum to minimum values of the range.
Resistance (inversely proportional)	CC, CP, CV	A change of $10 \mathrm{k} \Omega$ to 0Ω causes a change of 0% to 100% of the rated range value.
	CR	A change of $10 \mathrm{k} \Omega$ to 0Ω causes a change ranging from the maximum to minimum values of the range

- Other external analog controls

-Load on/off control and monitoring -Range control and monitoring in each current range switching mode -Pause clear during trigger input sequences -Forcible alarm generation upon alarm input alnput current monitoring by the current monitor -Short signal output from the relay contact

* To connect to the external analog input interface, use a commercially available MIL-standard 20-pin connector or the accessory kit (OP01-PLZ-4W).

Rating

Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Operating voltage (DC)*1	1.5 V to $150 \mathrm{~V} * 2$			0 V to 150 V 3	
Current	33 A	66 A	200 A	33 A	132 A
Power	165 W	330 W	1000 W	165 W	660 W

CC mode

		Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Operating range	Range	H	0 A to 33 A	0 A to 66 A	0 A to 200 A	0 A to 33 A	0 A to 132 A
		M	0 A to 3.3 A	0 A to 6.6 A	0 A to 20 A	0 A to 3.3 A	0 A to 13.2 A
		L	0 A to 330 mA	0 A to 660 mA	0 A to 2 A	0 A to 330 mA	0 A to 1.32 A
Setting range	Range	H	0 A to 34.65 A	0 A to 69.3 A	0 A to 210 A	0 A to 34.65 A	0 A to 138.6 A
		M	0 A to 3.465 A	0 A to 6.93 A	0 A to 21 A	0 A to 3.465 A	0 A to 13.86 A
		L	0 A to 346.5 mA	0 A to 693 mA	0 A to 2.1 A	0 A to 346.5 mA	0 A to 1.386 A
Resolution	Range	H	1 mA	2 mA	10 mA	1 mA	10 mA
		M	0.1 mA	0.2 mA	1 mA	0.1 mA	1 mA
		L	0.01 mA	0.02 mA	0.1 mA	0.01 mA	0.1 mA
Accuracy of setting	Range	H, M	$\pm(0.2 \%$ of set $+0.1 \%$ of f.s *1) + Vin *2/ $500 \mathrm{k} \Omega$				
		L	$\pm(0.2 \%$ of set $+0.1 \%$ of f.s)				
	Parallel operation		$\pm(1.2$ \% of set +1.1 \% of f.s *3)				
Input voltage variation *4	Range	H	2 mA	4 mA	10 mA	2 mA	8 mA
		M	2 mA	4 mA	10 mA	2 mA	8 mA
		L	0.1 mA	0.2 mA	0.6 mA	0.1 mA	0.4 mA
Ripple		rms *5	3 mA	5 mA	$20 \mathrm{~mA} * 7$	7.5 mA	30 mA *7
		p-p *6	30 mA	50 mA	100 mA *7	50 mA	200 mA *7

CR mode

Operating range*1		Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
	Range	H	22 S to $400 \mu \mathrm{~S}$ $(45.455 \mathrm{~m} \Omega$ to $2.5 \mathrm{k} \Omega)$	$\begin{gathered} 44 \mathrm{~S} \text { to } 800 \mu \mathrm{~S} \\ (22.727 \mathrm{~m} \Omega \text { to } 1.25 \mathrm{k} \Omega) \\ \hline \end{gathered}$	133.332 S to 2.4 mS $(7.5 \mathrm{~m} \Omega$ to $416.666 \Omega)$	22 S to $400 \mu \mathrm{~S}$ $(45.455 \mathrm{~m} \Omega$ to $2.5 \mathrm{k} \Omega)$	88 S to 1.6 mS $(11.363 \mathrm{~m} \Omega$ to $625 \Omega)$
		M	$\begin{array}{c\|} \hline 2.2 \mathrm{~S} \text { to } 40 \mu \mathrm{~S} \\ (454.55 \mathrm{~m} \Omega \text { to } 25 \mathrm{k} \Omega) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.4 \mathrm{~S} \text { to } 80 \mu \mathrm{~S} \\ (227.27 \mathrm{~m} \Omega \text { to } 12.5 \mathrm{k} \Omega) \\ \hline \end{array}$	$\begin{aligned} & 13.3332 \mathrm{~S} \text { to } 2420 \mu \mathrm{~S} \\ & (75 \mathrm{~m} \Omega \text { to } 4.1666 \mathrm{k} \Omega) \end{aligned}$	$\begin{gathered} 2.2 \mathrm{~S} \text { to } 40 \mu \mathrm{~S} \\ (454.55 \mathrm{~m} \Omega \text { to } 25 \mathrm{k} \Omega) \end{gathered}$	$\begin{gathered} 8.8 \mathrm{~S} \text { to } 160 \mu \mathrm{~S} \\ (113.63 \mathrm{~m} \Omega \text { to } 6.25 \mathrm{k} \Omega) \\ \hline \end{gathered}$
		L	0.22 S to $4 \mu \mathrm{~S}$ $(4.5455 \Omega$ to $250 \mathrm{k} \Omega)$	0.44 S to $8 \mu \mathrm{~S}$ (2.2727Ω to $125 \mathrm{k} \Omega$)	$\|$1.33332 S to $24 \mu \mathrm{~S}$ $(750 \mathrm{~m} \Omega$ to $41.666 \mathrm{k} \Omega)$	$\begin{gathered} 0.22 \mathrm{~S} \text { to } 4 \mu \mathrm{~S} \\ (4.5455 \Omega \text { to } 250 \mathrm{k} \Omega) \end{gathered}$	0.88 S to $16 \mu \mathrm{~S}$ $(1.1363 \mathrm{~m} \Omega$ to $62.5 \mathrm{k} \Omega)$
Setting range	Range	H	$\begin{gathered} 23.1 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (43.290 \mathrm{~m} \Omega \text { to OPEN }) \end{gathered}$	$\begin{array}{\|c\|} \hline 46.1 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (21.692 \mathrm{~m} \Omega \text { to OPEN }) \\ \hline \end{array}$	139.9968 S to 0 S $(7.1430 \mathrm{~m} \Omega$ to OPEN)	$\begin{gathered} 23.1 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (43.290 \mathrm{~m} \Omega \text { to OPEN }) \end{gathered}$	$\begin{gathered} 92.4 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (10.822 \mathrm{~m} \Omega \text { to OPEN }) \end{gathered}$
		M	$\begin{gathered} 2.31 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (432.9 \mathrm{~m} \Omega \text { to } \mathrm{OPEN}) \end{gathered}$	4.61 S to 0 S $(216.92 \mathrm{~m} \Omega$ to OPEN $)$	13.99968 S to 0 S ($71.430 \mathrm{~m} \Omega$ to OPEN)	$\begin{gathered} 2.31 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (432.9 \mathrm{~m} \Omega \text { to } \mathrm{OPEN}) \end{gathered}$	9.24 S to 0 S $(108.22 \mathrm{~m} \Omega$ to OPEN $)$
		L	$\begin{gathered} 0.231 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (4.329 \Omega \text { to OPEN }) \end{gathered}$	$\begin{gathered} 0.461 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (2.1692 \Omega \text { to OPEN }) \end{gathered}$	1.399968 S to 0 S $(714.30 \mathrm{~m} \Omega$ to OPEN$)$	$\begin{gathered} 0.231 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (4.329 \Omega \text { to OPEN }) \end{gathered}$	$\begin{gathered} 0.924 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (1.0822 \Omega \text { to OPEN }) \\ \hline \end{gathered}$
Resolution	Range	H	$400 \mu \mathrm{~S}$	$800 \mu \mathrm{~S}$	2.424 mS	$400 \mu \mathrm{~S}$	1.6 mS
		M	$40 \mu \mathrm{~S}$	$80 \mu \mathrm{~S}$	$242.4 \mu \mathrm{~S}$	$40 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
		L	$4 \mu \mathrm{~S}$	$8 \mu \mathrm{~S}$	$24.24 \mu \mathrm{~S}$	$4 \mu \mathrm{~S}$	$16 \mu \mathrm{~S}$
Accuracy of setting *2	Range	H, M	$\pm(0.5 \%$ of set * $3+0.5 \%$ of f.s * 4$)+$ Vin $* 5 / 500 \mathrm{k} \Omega$				
		L	\pm (0.5 \% of set * $3+0.5 \%$ of f.s)				

CV mode

CP mode

		Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Operating range	Range	H	16.5 W to 165 W	33 W to 330 W	100 W to 1000 W	16.5 W to 165 W	66 W to 660 W
		M	1.65 W to 16.5 W	3.3 W to 33 W	10 W to 100 W	1.65 W to 16.5 W	6.6 W to 66 W
		L	0.165 W to 1.65 W	0.33 W to 3.3 W	1 W to 10 W	0.165 W to 1.65 W	0.66 W to 6.6 W
Setting range	Range	H	0 W to 173.25 W	0 W to 346.5 W	0 W to 1050 W	0 W to 173.25 W	0 W to 693 W
		M	0 W to 17.325 W	0 W to 34.65 W	0 W to 105 W	0 W to 17.325 W	0 W to 69.3 W
		L	0 W to 1.7325 W	0 W to 3.465 W	0 W to 10.5 W	0 W to 1.7325 W	0 W to 6.93 W
Resolution	Range	H	10 mW	10 mW	100 mW	10 mW	20 mW
		M	1 mW	1 mW	10 mW	1 mW	2 mW
		L	0.1 mW	0.1 mW	1 mW	0.1 mW	0.2 mW
Accuracy of setting *1	Range		$\pm(0.6$ \% of set +1.4 \% of f.s *2)				

[Rating]
*1 Minimum voltage at which the current starts flowing to the PLZ-4W is approximately 0.3 V . For description of theminimum voltage, see "3.3 Operating area of the PLZ-4W".
*2 The minimum operating voltage (including the voltage drop due to the wire inductance component) in switchingmode increases by 0.15 V per $1 \mathrm{~A} / \mu \mathrm{s}$ at slew rate settings greater than $5 \mathrm{~A} / \mu \mathrm{s}$.
*3 The minimum operating voltage (including the voltage drop due to the wire inductance component) in switchingmode increases by 0.3 V per $1 \mathrm{~A} / \mu \mathrm{s}$ at slew rate settings greater than $5 \mathrm{~A} / \mu \mathrm{s}$.

[CC mode]

*1 Full scale of H range
*2 Vin: Input terminal voltage of Electronic Load
*3 M range applies to the full scale of H range.
*4 When the input voltage is varied from 1.5 V to 150 V at a current of rated power/150 V.
*5 Measurement frequency bandwidth: 10 Hz to 1 MHz
*6 Measurement frequency bandwidth: 10 Hz to 20 MHz
*7 At measurement current of 100 A

[CR mode]

*1 Conductance $[\mathrm{S}]=$ Input current $[\mathrm{A}] /$ input voltage $[\mathrm{V}]=1 /$ resistance $[\Omega]$
*2 Converted value at the input current. At the sensing point.
*3 set = Vin/Rset
*4 Full scale of H range
*5 Vin: Input terminal voltage of Electronic Load
[CV mode]
*1 At the sensing point during remote sensing under the operating range of the input voltage. It is also applied for thecondition of the parrallel operation.
*2 With respect to a change in the current of 10% to 100% of the rating at an input voltage of 1.5 V (during remotesensing).

[CP mode]

*1 It is not applied for the condition of the parrallel operation.
*2 M range applies to the full scale of H range.
[Meters]
*1 Displays the product of the voltmeter reading and ammeter reading.
*2 In a mode other the CP mode
*3 In CP mode
[Switching mode]
*1 The minimum time width is $10 \mu \mathrm{~s}$. Between 5 kHz and 20 kHz , the maximum duty cycle is limited by the mini-mum time width.

[Slew rate]

*1 In CC mode. The maximum slew rate of each range is $1 / 10$ th the value in CR mode.
*2 Time to reach from 10% to 90% when the current is varied from 2% to 100% of the rated current.

Meters

Model			PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Voltmeter	Range	H	0.00 V to 150.00 V				
		L	0.000 V to 15.000 V				
	Accuracy		$\pm(0.1 \%$ of rdg $+0.1 \%$ of f.s)				
Ammeter	Range	H, M	$\begin{gathered} 0.000 \mathrm{~A} \text { to } \\ 33.000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.000 \mathrm{~A} \text { to } \\ & 66.000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{~A} \text { to } \\ & 200.00 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.000 \mathrm{~A} \text { to } \\ & 33.000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{~A} \text { to } \\ & 132.00 \mathrm{~A} \end{aligned}$
		L	$\begin{gathered} 0.00 \mathrm{~A} \text { to } \\ 330.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~A} \text { to } \\ 660.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.0000 \mathrm{~A} \text { to } \\ 2.0000 \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.00 \mathrm{~A} \text { to } \\ 330.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.000 \mathrm{~A} \text { to } \\ 1.3200 \mathrm{~A} \end{gathered}$
	Accuracy		$\pm(0.2$ \% of rdg $+0.3 \%$ of f.s)				
Wattmeter *1	Range	H, M	$\begin{aligned} & 0.00 \mathrm{~W} \text { to } \\ & 165.00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{~W} \text { to } \\ & 330.00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 0.0 \mathrm{~W} \text { to } \\ & 1000.0 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{~W} \text { to } \\ & 165.00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{~W} \text { to } \\ & 660.00 \mathrm{~W} \end{aligned}$
		L *2	$\begin{gathered} 0.000 \mathrm{~W} \text { to } \\ 49.500 \mathrm{~W} \end{gathered}$	$\begin{aligned} & 0.000 \mathrm{~W} \text { to } \\ & 99.000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{~W} \text { to } \\ & 300.00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 0.000 \mathrm{~W} \text { to } \\ & 49.500 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 0.000 W to } \\ & \text { 198.00 W } \end{aligned}$
		L *3	$\begin{aligned} & 0.0000 \mathrm{~W} \text { to } \\ & 1.6500 \mathrm{~W} \end{aligned}$	$\begin{gathered} 0.0000 \mathrm{~W} \text { to } \\ 3.3000 \mathrm{~W} \end{gathered}$	$\begin{aligned} & 0.000 \mathrm{~W} \text { to } \\ & 10.000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.0000 \mathrm{~W} \text { to } \\ & 1.6500 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.0000 \mathrm{~W} \text { to } \\ & 6.6000 \mathrm{~W} \end{aligned}$

Switching mode

Model		PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Operation mode		CC and CR				
Duty cycle setting		5% to 95% *1, 0.1 \% step				
Selectable frequency range		1 Hz to 20 kHz				
Frequency resolution	1 Hz to 10 Hz	0.1 Hz				
	10 Hz to 100 Hz	1 Hz				
	100 Hz to 1 kHz	10 Hz				
	1 kHz to 20 kHz	100 Hz				
Frequency accuracy of setting		$\pm(0.5$ \% of set)				

Slew rate

		Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Setting range *1	Range	H	$\begin{aligned} & 2.5 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 2.5 \mathrm{~A} / \mu \mathrm{s} \\ & \hline \end{aligned}$	$5 \mathrm{~mA} / \mathrm{s}$ to $5 \mathrm{~A} / \mathrm{\mu s}$	$\begin{array}{r} 16 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 16 \mathrm{~A} / \mu \mathrm{s} \\ \hline \end{array}$	$\begin{aligned} & 2.5 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 2.5 \mathrm{~A} / \mu \mathrm{s} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 10 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
		M	$\begin{gathered} 250 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 250 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 500 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 500 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 1.6 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 1.6 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{gathered} 250 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 250 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$1 \mathrm{~mA} / \mu \mathrm{s}$ to $1 \mathrm{~A} / \mu \mathrm{s}$
		L	$25 \mu \mathrm{~A} / \mu \mathrm{s}$ to $25 \mathrm{~mA} / \mathrm{us}$	$\begin{gathered} 50 \mu \mathrm{~A} / \mathrm{\mu s} \\ \text { to } 50 \mathrm{~mA} / \mathrm{\mu s} \\ \hline \end{gathered}$	$\begin{gathered} 160 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 160 \mathrm{~mA} / \mu \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 25 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 25 \mathrm{~mA} / \mathrm{\mu s} \\ \hline \end{gathered}$	$\begin{gathered} 100 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 100 \mathrm{~mA} / \mu \mathrm{s} \\ \hline \end{gathered}$
Resolution			See below.				
Accuracy of setting *2			$\pm(10 \%$ of set $+5 \mu \mathrm{~s})$				

Slew rate resolution

$\begin{aligned} & \hline \text { PLZ164W } \\ & \text { PLZ164WA } \end{aligned}$	Setting	$\begin{gathered} 25 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 250 \mu \mathrm{~A} / \mu \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 250 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 2.5 \mathrm{~mA} / \mu \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 25 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 25 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 250 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 250 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 2.5 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
	Resolution	100 nA	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	1 mA
PLZ334W	Setting	$\begin{gathered} 50 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 500 \mu \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	$500 \mu \mathrm{~A} / \mu \mathrm{s}$ to $5 \mathrm{~mA} / \mu \mathrm{s}$	$\begin{gathered} 5 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 50 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 50 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 500 \mathrm{~mA} / \mathrm{\mu s} \end{gathered}$	$\begin{aligned} & 500 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 5 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
	Resolution	200 nA	$2 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$	2 mA
PLZ664WA	Setting	$\begin{aligned} & 100 \mu \mathrm{~A} / \mu \mathrm{s} \\ & \text { to } 1 \mathrm{~mA} / \mu \mathrm{s} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 10 \mathrm{~mA} / \mu \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 100 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 100 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 1 \mathrm{~A} / \mu \mathrm{s} \\ & \hline \end{aligned}$	$1 \mathrm{~A} / \mu \mathrm{s}$ to $10 \mathrm{~A} / \mu \mathrm{s}$
	Resolution	400 nA	$4 \mu \mathrm{~A}$	$40 \mu \mathrm{~A}$	$400 \mu \mathrm{~A}$	4 mA
PLZ1004W	Setting	$\begin{gathered} 160 \mu \mathrm{~A} / \mu \mathrm{s} \\ \text { to } 1.6 \mathrm{~mA} / \mu \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 16 \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	$\begin{gathered} 16 \mathrm{~mA} / \mu \mathrm{s} \\ \text { to } 160 \mathrm{~mA} / \mu \mathrm{s} \\ \hline \end{gathered}$	$\begin{aligned} & 160 \mathrm{~mA} / \mu \mathrm{s} \\ & \text { to } 1.6 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{gathered} 1.6 \mathrm{~A} / \mathrm{\mu s} \\ \text { to } 16 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$
	Resolution	600 nA	$6 \mu \mathrm{~A}$	$60 \mu \mathrm{~A}$	$600 \mu \mathrm{~A}$	6 mA

Soft start

	Model	PLZ164W	PLZ334W	PLZ1004W
Operation mode		PLZ164WA	PLZ664WA	
Selectable time range	$1,2,5,10,20,50,100$, or 200 ms			
Time accuracy	$\pm(30 \%$ of set $+100 \mu \mathrm{~s})$			

Remote sensing

Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Voltage that can be compensated		2 V for a single line			

Protection function

Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Overvoltage protection (OVP)	Turns off the load at 110% of the rated voltage				
Overcurrent protection (OCP)	0.03 A to 36.3 A	0.06 A to 72.6 A	0.2 A to 220 A	0.03 A to 36.3 A	0.13 A to 145.2 A
	Or 110% of the maximum current of each range				
Overpower protection (OPP)	0.1 W to 181.5 W	0.3 W to 363 W	1 W to 1100 W	0.1 W to 181.5 W	0.6 W to 726 W
	Or 110% of the maximum power of each range Load off or limit selectable				
Overheat protection (OHP)	Turns off the load when the heat sink temperature reaches $95{ }^{\circ} \mathrm{C}$				
Undervoltage protection (UVP)	Turns off the load when detected.				
	Can be set in the range of 0 V to 150 V or Off.				
Reverse connection protection (REV)	By diode and fuse. Turns off the load when an alarm occurs.				

Sequence function

	Model	PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Normal sequence	Operation mode	CC, CR, CV, or CP				
	Maximum number of steps	256				
	Step execution time	$1 \mathrm{~ms}-999 \mathrm{~h} 59 \mathrm{~min}$				
	Time resolution	$\begin{gathered} 1 \mathrm{~ms}(1 \mathrm{~ms}-1 \mathrm{~min}) / 100 \mathrm{~ms}(1 \mathrm{~min}-1 \mathrm{~h}) / 1 \mathrm{~s}(1 \mathrm{~h}-10 \mathrm{~h}) / \\ 10 \mathrm{~s}(10 \mathrm{~h}-100 \mathrm{~h}) / 1 \mathrm{~min}(100 \mathrm{~h}-999 \mathrm{~h} 59 \mathrm{~min}) \end{gathered}$				
Fast sequence	Operation mode	CC or CR				
	Maximum number of steps	1024				
	Step execution time	$25 \mu \mathrm{~s}-100 \mathrm{~ms}$				
	Time resolution	$25 \mu \mathrm{~s}(25 \mu \mathrm{~s}-100 \mu \mathrm{~s}) / 100 \mu \mathrm{~s}(100 \mu \mathrm{~s}-100 \mathrm{~ms})$				

Others, Common specifications

Model		PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Elapsed time display		Measures the time from load on to load off. On/Off selectable.				
		Measures from 1 s up to 999 h 59 min 59 s				
Auto load off timer		Automatically turns off the load after a specified time elapses.				
		Can be set in the range of 1 s to 999 h 59 min 59 s or off				
Front panel BNC connector	TRIG OUT	Trigger output: Approx. 4.5 V , pulse width: Approx. $2 \mu \mathrm{~s}$, output impedance: Approx. 500Ω Outputs a pulse during sequence operation and switching operation.				
	IMON OUT	Current monitor output 1 V f.s (H or L range) and 0.1 V f.s (M range)				
Communication function	GPIB	IEEE std. 488.1-1978SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0, E1				
		Supports the SCPI and IEEE std. 488.2-1992 command set Sets panel functions except the power switch and reads measured values				
	RS232C	D-SUB 9-pin connector (conforms to EIA-232-D)				
		Sets panel functions except the power switch and reads measured values Supports the SCPI and IEEE std. 488.2-1992 command set Baud rate: 2400, 4800, 9600, 19200 bps Data length: 8 -bit, Stop bit: 1, 2-bit, Parity bit: None, Flow control: Xon/Xoff				
	USB	Conforms to USB 2.0 Specifications and USBTMC-USB488 Device Class Specifications				
		Sets panel functions except the power switch and reads measured values Communication speed 12 Mbps (Full speed)				

General Specifications

Model		PLZ164W	PLZ334W	PLZ1004W	PLZ164WA	PLZ664WA
Input voltage range		$\begin{gathered} 100 \text { VAC }-240 \text { VAC } \\ (90 \text { VAC - } 250 \text { VAC) } \\ \text { Single phase, continuous } \end{gathered}$			100 VAC - 120 VAC/ 200 VAC - 240 VAC (90 VAC - 132 VAC/180 VAC - 250 VAC) Single phase	
Input frequency range		$47 \mathrm{~Hz}-63 \mathrm{~Hz}$				
Power consumption		80 VAmax	90 VAmax	160 VAmax	300 VAmax	1500 VAmax *1
Inrush current		45 A			80 A	
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$				
Operating humidity range		$20 \%-85 \% \mathrm{RH}$ (without condensation)				
Storage temperature range		$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$				
Storage humidity range		$90 \% \mathrm{RH}$ or less (without condensation)				
Isolation voltage		$\pm 500 \mathrm{~V}$				
Insulation resistance	Primary - input terminal	$500 \mathrm{VDC}, 30 \mathrm{M} \Omega$ or more (ambient humidity of 70% RH or less)				
	Primary - chassis	$500 \mathrm{VDC}, 30 \mathrm{M} \Omega$ or more (ambient humidity of 70% RH or less)				
Withstand voltage	Primary - input terminal	No abnormalities at 1500 VAC for 1 minute.				
	Primary - chassis	No abnormalities at 1500 VAC for 1 minute.				
Dimensions (mm)		See outline drawing				
Weight		Approx. 7 kg (15.43 lb)	Approx. 8 kg (17.64 lb)	Approx. 15 kg (33.07 lb)	Approx. 7.5 kg (16.53 lb)	Approx. 16 kg (35.27 lb)
Battery backup		Backs up setup information				
Accessories		Power cord $\times 1$ pc. (with plug, Length: approx. 2.4 m), Load input terminal cover $\times 1$ piece (2 lock plates provided), Set of screws for the load input terminal $\times 2$ sets (bolts, nuts, and spring washers), Setup guide $\times 1$ piece(Japanese, English), Quick Reference(Japanese:1 piece, Englis:1 piece), CD-ROM $\times 1$ piece *2				
Safety *3		Complies with the requirements of the following directive and standard. Low Voltage Directive 2014/35/EU *4 EN 61010-1 (Class I *5, Pollution degree 2 *6)				
Electromagnetic compatibility$(E M C) * 3, * 4$		Complies with the requirements of the following directive and standards. EMC Directive 2014/30/EU EN 61326-1 (Class A*7) EN 55011 (Class A *7, Group 1 *8) EN 61000-3-2 *9 EN 61000-3-3 *9				

[General Specifications]
*1. 900 VA when input voltage is 100 VAC.
*2. Contains Application \& Samples, User's manual, the Communication Interface Manual and KI-VISA.
*3. Does not apply to specially ordered or modified PLZ-4Ws.
*4. Limited to products that have the CE mark on their panels.
Not be in compliance with EMC limits unless the ferritecore is attached on the cable for connection of J1 connector.
*5. This is a Class I equipment. Be sure to ground this product's protective conductor terminal. The safety of this productis only guaranteed when the product is properly grounded.
*6. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength orsurface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasionaltemporary conductivity caused by condensation.
*7. This is a Class A equipment. This product is intended for use in an industrial environment. This product may causeinterference if used in residential areas. Such use must be avoided unless the user takes special measures to reduceelectromagnetic emissions to prevent interference to the reception of radio and television broadcasts.
*8. This is a Group 1 equipment.
This product does not generate and/ or use intentionally radio-frequency energy, in theform of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.
*9. Excluding the PLZ664WA.

■ Type I (PLZ164W/PLZ164WA/PLZ334W)

for JIS-compliant rack KRA150

$$
\begin{array}{ll}
\text { DC input termials } & : \text { M6 (front), M8 (rear) } \\
\text { Power input } & : A C \text { inlet }
\end{array}
$$

■ Type II (PLZ664WA/PLZ1004W/PLZ2004WB)

KIKUSUI ELECTRONICS CORPORATION
Southwood 4F,6-1 Chigasaki-chuo,Tsuzuki-ku,Yokohama,224-0032,Japan Phone: (+81)45-482-6353,Facsimile: (+81)45-482-6261,www.kikusui.co.jp

KIKUSUI AMERICA, INC. 1-310-214-0000 www.kikusuiamerica.com KाMSUI Phone : 310-214-0000 Facsimile : 310-214-0014

KIKUSUI TRADING (SHANGHAI) Co., Ltd. www.kikusui.cn ©KIKUSUI Room 305,Shenggao Building, No.137,Xianxia Road, Shanghai City, China Phone : 021-5887-9067 Facsimile : 021-5887-9069

For our local sales distributors and representatives, please refer to "sales network" of our website.

