Низкопрофильные дигитайзеры серии 6, 1 ГГц - 8 ГГц, 4 канала

LPD сериия 6
Для увеличения картинки наведите мышкой
LPD сериия 6LPD сериия 6LPD сериия 6LPD сериия 6
LPD сериия 6LPD сериия 6LPD сериия 6LPD сериия 6

Наличие: По запросу

По запросу
По запросу
По запросу

Осциллографы LPD сериия 6 Подробнее




Американская компания Tektronix была создана в 1946 году. Основатели компании Howard C. Vollum и Jack Murdock считаются изобретателями первого в мире осциллографа, умевшего осуществлять синхронизацию картинки. Компания Tektronix первая в мире сделала из осциллографа измерительный прибор, т.е. с калиброванными сетками на экране. 

В 1963 году компания первой разработала технологию ЭЛТ «Direct View BistableStorage Tube (DVBST)», позволяющую запоминать осциллограмму… подробнее





Обзор
Свернуть Развернуть
Основные возможности и технические характеристики

Performance in numbers

Input Channels

  • 4 SMA inputs
  • Each SMA input supports Analog, Spectral (using DDC), or both simultaneously
  • Performance for EVERY Channel

  • Sample Rate: 25 GS/s
  • Bandwidth: DC to 8 GHz (optional)
  • Vertical Resolution: 12-bit ADC
  • Real-Time 2 GHz DDC (optional)
  • Record Length: 125 Mpts (std), 250 Mpts (optional)
  • Lowest-in-class Noise
  • Highest-in-class ENOB
  • Best-in-class channel-to-channel isolation
  • Real-Time Digital Down Converter (DDC)

  • Patented individual time domain and frequency domain controls
  • Up to 2 GHz capture bandwidth (optional)
  • IQ data transfers to PC for analysis (optional)
  • Frequency vs time, Phase vs time and Magnitude vs time plotting (optional)
  • Superior low noise, vertical resolution and accuracy

  • Low input noise enabled by new TEK061 front-end ASICs
  • Noise at 1mV/div: 54.8 uV @ 1 GHz
  • Input Range: 10mV to 10 V full scale
  • DC Gain Accuracy: +/-1.0% at all gain settings >1 mV/div
  • Effective Number of Bits (ENOB):
    • 8.2 bits at 1 GHz
    • 7.6 bits at 2.5 GHz
    • 7.25 bits at 4 GHz
    • 6.8 bits at 6 GHz
    • 6.5 bits at 8 GHz
  • Remote communication and connectivity

  • Ethernet 10/100/1000 port
  • USB 3.0 device port (USBTMC) up to 800 Megabits/second
  • LXI 1.5 Certified (VXI-11)
  • Easy remote access with e*Scope; just enter the instrument IP address into a browser
  • Award-winning user interface
  • Drivers: IVI-C, IVI-COM, LabVIEW
  • Support for VISA, MATLAB, Python, C/C++/C#, Sockets
  • Measurement Analysis

  • 36 standard measurements
  • Jitter Measurements (optional)
  • DDR Measurements (optional)
  • Power Measurements (optional)
  • Operating System

  • Closed Linux Embedded OS (standard)
  • Security & Declassification (option 6-SEC)

  • Password protect all user-accessible ports
  • Locks down the digitizer, prevents on-instrument user data storage
  • Meets the needs for top secret and high security environments
  • Dimensions

  • 2U (3.5 in./89 mm) tall & rack ready out of the box (standard configuration)
  • 17 in. (432 mm) wide
  • Fits into standard 24 - 32 in. (610 - 813 mm) racks
  • Air flow is left to right for rack setup
  • The 6 Series family

    The 6 Series Low Profile Digitizer (LPD64) represents the highest performance digitizer on all channels in its class. This high-speed digitizer has the functionality of a digitizer and the power of an oscilloscope, sharing a similar hardware platform as the 6 Series MSO.

    The transition from a 6 Series MSO benchtop oscilloscope to a Low Profile Digitizer has never been easier for R&D engineers needing to move their code, test work and platform performance into manufacturing and automation. Both products support the same user interface, remote capability, performance characteristics and programming back-end to make this transition as simple and easy as possible. No need to rewrite test routines and development test cycle code!

    For more information on the capabilities of the benchtop 6 Series MSO, including the award-winning user experience and the various analysis software options, please see the 6 Series MSO datasheet.



    The Low Profile family

    The 6 Series Low Profile Digitizer expands the performance of the 5 Series MSO Low Profile by adding twice the number of Tektronix TEK049 ASICS in the same 2U footprint. Now with 25 GS/s and up to 8 GHz on all channels. Low Profile users now have the choice of extreme high channel count or extreme performance in the same rack form factor.

    For more information on the capabilities of the benchtop 5 Series MSO Low Profile, please see the datasheet.



    Two 6 Series Low Profile Digitizers (left) and two 5 Series MSO Low Profile oscilloscopes (right)

    Quick Comparison

    6 Series Low Profile Digitizer

    5 Series MSO Low Profile

    Sample Rate 25 GS/s 6.25 GS/s
    Analog Bandwidth Up to 8 GHz 1 GHz
    RF (DDC) Span Bandwidth 2 GHz 500 MHz
    ENOB @ 1 GHz 8.2 bits 7.6 bits
    LXI compliance version 1.5  -
    Rack Dimensions 2U 2U

    Machine diagnostics for physics

    Physics is constantly leading the world to exciting new scientific discoveries in both matter and energy. These experiments require digitizers and oscilloscopes with improvements in precision, accuracy, performance and density when monitoring target test points. The 6 Series Low Profile Digitizer meets these requirements by bringing an industry leading performance, small form factor, Tektronix's class of reliability, easy remote accessibility, and award-winning user interface.


    Common physics fields

  • High Energy (Particle) Physics
  • Nuclear Physics
  • Atomic, Molecular and Optical Physics
  • Condensed Matter
  • Research fields requiring single shot events or fast repetitive monitoring in their research labs; experiments like Photo Doppler Velocimetry (PDV), VISAR, gas guns, spectroscopy, accelerators and more. Many of these are diagnosing experiments and validating doppler shifts, phase alignments, beat frequencies, beam steering alignment or amplitudes. Doing this with reliable, high performance equipment is key for long term success.

    Performance on every channel

    Tired of turning on multiple digitizer channels and wondering what the sample rate, record length or bandwidth settings are? The 6 Series Low Profile Digitizer has industry leading performance on EVERY channel, always. No compromises!

    Key performance features:

  • 25 GS/s on ALL channels
  • DC to 8 GHz on ALL channels
  • Up to 250 Million samples on ALL channels
  • Up to 2 GHz RF DDC capture bandwidth on ALL channels
  • ALL channels fit nicely in a 2U rack-ready digitizer
  • 12-bit analog-to-digital converters
  • Best-in-class low noise
  • Best-in-class Effective Number Of Bits
  • Best-in-class channel isolation (crosstalk)

  • Spectrum View

     

    Intuitive spectrum analyzer controls like center frequency, span and resolution bandwidth (RBW), independent from time domain controls, provide easy setup for frequency domain analysis. A spectrum view is available for each analog input, enabling multichannel mixed domain analysis.

    It is often easier to debug an issue by viewing one or more signals in the frequency domain. Oscilloscopes and digitizers have included math-based FFTs for decades in an attempt to address this need. However, FFTs are notoriously difficult to use as they are driven by the same acquisition system that's delivering the analog time-domain view. When you optimize acquisition settings for the analog view, your frequency-domain view isn't what you want. When you get the frequency-domain view you want, your analog view is not what you want. With math-based FFTs, it is virtually impossible to get optimized views in both domains.

    Spectrum View changes all of this. Tektronix' patented technology provides both a decimator for the time-domain and a digital down-converter for the frequency-domain behind each input. The two different acquisition paths let you simultaneously observe both time- and frequency-domain views of the input signal with independent acquisition settings for each domain. Other manufacturers offer various 'spectral analysis' packages that claim ease-of-use, but they all exhibit the limitations described above. Only Spectrum View provides both exceptional ease-of-use and the ability to achieve optimal views in both domains simultaneously.

    Waveform and IQ data can easily be transferred from the 6 Series Low Profile to a PC using a variety of programming commands and API interfaces that come standard on all Tektronix 5 Series & 6 Series products.



    Tektronix's TEK049 ASIC has a patented signal path enabling signals to travel from the ADC to both a traditional decimator (scope) and Digital Down Converter (DDC - RF) for independent control of both the time and frequency domains.

    Behind the performance

    The Tektronix-designed TEK049 ASIC contains 12-bit analog-to-digital converters (ADCs) that provide 16 times more resolution than traditional 8-bit ADCs. The TEK049 is paired with the new Tektronix TEK061 front-end amplifier with industry leading low noise that enables the best signal fidelity possible to capture small signals with high resolution.



    Lowest in class noise enabled by new front-end amplifier

    A key attribute to being able to view fine signal details on small, high-speed signals is noise. The higher a measurement systems' intrinsic noise, the less actual signal detail will be visible. This becomes more critical on a digitizer when the vertical settings are set to high sensitivity (like ≤ 10 mV/div) to view small signals that are prevalent in high-speed bus topologies. The 6 Series Low Profile has a new front-end ASIC, the TEK061, that enables breakthrough noise performance at the highest sensitivity settings.

    In addition, a new High Res mode applies a hardware-based unique Finite Impulse Response (FIR) filter based on the selected sample rate. The FIR filter maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the digitizer amplifiers and ADC above the usable bandwidth for the selected sample rate. High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤ 625 MS/s sample rates and 200 MHz of bandwidth.

    Remote control made easy



    Programming the 6 Series Low Profile Digitizer in a test rack for easy remote control has never been easier.

    Automated test equipment and multichannel systems require robust programming capability and are often subject to rack-space constraints and/or speed restraints. The 6 Series Low Profile Digitizer packs 4 high performance 25 GS/s channels into just 2 rack units and comes ready to mount in a rack. Each input can work as a precision analog channel and/or Spectrum channel with multiple remote interfaces that can be transferred over 1000Base-T Ethernet or Super Speed USB 3.0 ports to your local PC for further analysis. With the wide range of programming language support and GitHub repository, there are many ways to easily integrate your new digitizer into a test rack.

    Key remote access features include:

  • 2 rack units high (3.5 inches) with rackmount attached
  • Easy web browser remote access and control
  • LXI 1.5 certified (VXI-11)
  • Ethernet and USB 3.0 (USBTMC) device port with up to 800 Mbps transfer rate
  • Programmers manual with 1000+ VISA commands
  • Programming support: IVI-C, IVI-COM, MATLAB, LabView, Python, VISA, Sockets, and more
  • Tektronix GitHub programming examples


  • Easy remote control using e*Scope in a browser like Chrome, Firefox or Edge

    e*Scope is an easy remote viewing method of controlling a 5 Series or 6 Series oscilloscope or digitizer over a network connection through a standard web browser, in the exact same way that you do in-person. Simply type the instrument IP address into a modern browser and the LXI landing page is displayed, then select the Instrument Control to access e*scope. No drivers needed, it's all self-sustained with the browser, just like you were connected using the instrument screen or an attached monitor. Its fast, responsive and perfect for single or multiple instrument situations to visualize the data.



    Easy remote control using e*Scope across multiple instruments by tiling browser tabs on a monitor for viewing

    Synchronizing



    Synchronize multiple instrument channels within 200 ps using manual deskew and the Aux Trigger input

    When synchronizing multiple instruments its important to have the smallest amount of skew between instrument channels to allow for data timing accuracy. Generally speaking this can be broken down into two types of skew; the part that comes from uncertainty between the aux trigger to analog channel, and the part that comes from trigger jitter. By calibrating out the effects of channel delay to the aux input we can reduce the amount of timing inaccuracy between instrument channels to just the jitter. This process is called deskewing an instrument.

    Deskewing can be done to a reference channel that is simultaneously feeding a trigger edge (preferably over 1 Vpp) into the Aux Trigger input of multiple instruments and to the reference channel. When everything is adjusted, instrument to instrument channels can be within a very tight tolerance of only a couple sample points and within our specification of 200 ps. Whether you have 16 channels or 200 channels, all the data can be easily synchronized and analyzed.

    Enhanced security option

    The optional 6-SEC enhanced security option enables password-protected enabling/disabling of all instrument I/O ports and firmware upgrades. In addition, option 6-SEC provides the highest level of security by ensuring that internal memory never stores user settings or waveform data, in compliance with National Industrial Security Program Operating Manual (NISPOM) DoD 5220.22-M, Chapter 8 requirements and Defense Security Service Manual for the Certification and Accreditation of Classified Systems under the NISPOM. This ensures that you can confidently move the instrument out of a secure area.

    Arbitrary/Function Generator (AFG)

    The instrument contains an optional integrated arbitrary/function generator, perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing. The integrated function generator provides output of predefined waveforms up to 50 MHz for sine, square, pulse, ramp/triangle, DC, noise, sin(x)/x (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac. The AFG can load waveform records up to 128 k points in size from an internal file location or a USB mass storage device.

    The AFG feature is compatible with Tektronix' ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy.

    Digital Voltmeter (DVM) and Trigger Frequency Counter

    The instrument contains an integrated 4-digit digital voltmeter (DVM) and 8-digit trigger frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The trigger frequency counter provides a very precise readout of the frequency of the trigger event on which you’re triggering.

    Both the DVM and trigger frequency counter are available for free and are activated when you register your product.

    Свернуть Развернуть
    Основные возможности и технические характеристики

    Performance in numbers

    Input Channels

  • 4 SMA inputs
  • Each SMA input supports Analog, Spectral (using DDC), or both simultaneously
  • Performance for EVERY Channel

  • Sample Rate: 25 GS/s
  • Bandwidth: DC to 8 GHz (optional)
  • Vertical Resolution: 12-bit ADC
  • Real-Time 2 GHz DDC (optional)
  • Record Length: 125 Mpts (std), 250 Mpts (optional)
  • Lowest-in-class Noise
  • Highest-in-class ENOB
  • Best-in-class channel-to-channel isolation
  • Real-Time Digital Down Converter (DDC)

  • Patented individual time domain and frequency domain controls
  • Up to 2 GHz capture bandwidth (optional)
  • IQ data transfers to PC for analysis (optional)
  • Frequency vs time, Phase vs time and Magnitude vs time plotting (optional)
  • Superior low noise, vertical resolution and accuracy

  • Low input noise enabled by new TEK061 front-end ASICs
  • Noise at 1mV/div: 54.8 uV @ 1 GHz
  • Input Range: 10mV to 10 V full scale
  • DC Gain Accuracy: +/-1.0% at all gain settings >1 mV/div
  • Effective Number of Bits (ENOB):
    • 8.2 bits at 1 GHz
    • 7.6 bits at 2.5 GHz
    • 7.25 bits at 4 GHz
    • 6.8 bits at 6 GHz
    • 6.5 bits at 8 GHz
  • Remote communication and connectivity

  • Ethernet 10/100/1000 port
  • USB 3.0 device port (USBTMC) up to 800 Megabits/second
  • LXI 1.5 Certified (VXI-11)
  • Easy remote access with e*Scope; just enter the instrument IP address into a browser
  • Award-winning user interface
  • Drivers: IVI-C, IVI-COM, LabVIEW
  • Support for VISA, MATLAB, Python, C/C++/C#, Sockets
  • Measurement Analysis

  • 36 standard measurements
  • Jitter Measurements (optional)
  • DDR Measurements (optional)
  • Power Measurements (optional)
  • Operating System

  • Closed Linux Embedded OS (standard)
  • Security & Declassification (option 6-SEC)

  • Password protect all user-accessible ports
  • Locks down the digitizer, prevents on-instrument user data storage
  • Meets the needs for top secret and high security environments
  • Dimensions

  • 2U (3.5 in./89 mm) tall & rack ready out of the box (standard configuration)
  • 17 in. (432 mm) wide
  • Fits into standard 24 - 32 in. (610 - 813 mm) racks
  • Air flow is left to right for rack setup
  • The 6 Series family

    The 6 Series Low Profile Digitizer (LPD64) represents the highest performance digitizer on all channels in its class. This high-speed digitizer has the functionality of a digitizer and the power of an oscilloscope, sharing a similar hardware platform as the 6 Series MSO.

    The transition from a 6 Series MSO benchtop oscilloscope to a Low Profile Digitizer has never been easier for R&D engineers needing to move their code, test work and platform performance into manufacturing and automation. Both products support the same user interface, remote capability, performance characteristics and programming back-end to make this transition as simple and easy as possible. No need to rewrite test routines and development test cycle code!

    For more information on the capabilities of the benchtop 6 Series MSO, including the award-winning user experience and the various analysis software options, please see the 6 Series MSO datasheet.



    The Low Profile family

    The 6 Series Low Profile Digitizer expands the performance of the 5 Series MSO Low Profile by adding twice the number of Tektronix TEK049 ASICS in the same 2U footprint. Now with 25 GS/s and up to 8 GHz on all channels. Low Profile users now have the choice of extreme high channel count or extreme performance in the same rack form factor.

    For more information on the capabilities of the benchtop 5 Series MSO Low Profile, please see the datasheet.



    Two 6 Series Low Profile Digitizers (left) and two 5 Series MSO Low Profile oscilloscopes (right)

    Quick Comparison

    6 Series Low Profile Digitizer

    5 Series MSO Low Profile

    Sample Rate 25 GS/s 6.25 GS/s
    Analog Bandwidth Up to 8 GHz 1 GHz
    RF (DDC) Span Bandwidth 2 GHz 500 MHz
    ENOB @ 1 GHz 8.2 bits 7.6 bits
    LXI compliance version 1.5  -
    Rack Dimensions 2U 2U

    Machine diagnostics for physics

    Physics is constantly leading the world to exciting new scientific discoveries in both matter and energy. These experiments require digitizers and oscilloscopes with improvements in precision, accuracy, performance and density when monitoring target test points. The 6 Series Low Profile Digitizer meets these requirements by bringing an industry leading performance, small form factor, Tektronix's class of reliability, easy remote accessibility, and award-winning user interface.


    Common physics fields

  • High Energy (Particle) Physics
  • Nuclear Physics
  • Atomic, Molecular and Optical Physics
  • Condensed Matter
  • Research fields requiring single shot events or fast repetitive monitoring in their research labs; experiments like Photo Doppler Velocimetry (PDV), VISAR, gas guns, spectroscopy, accelerators and more. Many of these are diagnosing experiments and validating doppler shifts, phase alignments, beat frequencies, beam steering alignment or amplitudes. Doing this with reliable, high performance equipment is key for long term success.

    Performance on every channel

    Tired of turning on multiple digitizer channels and wondering what the sample rate, record length or bandwidth settings are? The 6 Series Low Profile Digitizer has industry leading performance on EVERY channel, always. No compromises!

    Key performance features:

  • 25 GS/s on ALL channels
  • DC to 8 GHz on ALL channels
  • Up to 250 Million samples on ALL channels
  • Up to 2 GHz RF DDC capture bandwidth on ALL channels
  • ALL channels fit nicely in a 2U rack-ready digitizer
  • 12-bit analog-to-digital converters
  • Best-in-class low noise
  • Best-in-class Effective Number Of Bits
  • Best-in-class channel isolation (crosstalk)

  • Spectrum View

     

    Intuitive spectrum analyzer controls like center frequency, span and resolution bandwidth (RBW), independent from time domain controls, provide easy setup for frequency domain analysis. A spectrum view is available for each analog input, enabling multichannel mixed domain analysis.

    It is often easier to debug an issue by viewing one or more signals in the frequency domain. Oscilloscopes and digitizers have included math-based FFTs for decades in an attempt to address this need. However, FFTs are notoriously difficult to use as they are driven by the same acquisition system that's delivering the analog time-domain view. When you optimize acquisition settings for the analog view, your frequency-domain view isn't what you want. When you get the frequency-domain view you want, your analog view is not what you want. With math-based FFTs, it is virtually impossible to get optimized views in both domains.

    Spectrum View changes all of this. Tektronix' patented technology provides both a decimator for the time-domain and a digital down-converter for the frequency-domain behind each input. The two different acquisition paths let you simultaneously observe both time- and frequency-domain views of the input signal with independent acquisition settings for each domain. Other manufacturers offer various 'spectral analysis' packages that claim ease-of-use, but they all exhibit the limitations described above. Only Spectrum View provides both exceptional ease-of-use and the ability to achieve optimal views in both domains simultaneously.

    Waveform and IQ data can easily be transferred from the 6 Series Low Profile to a PC using a variety of programming commands and API interfaces that come standard on all Tektronix 5 Series & 6 Series products.



    Tektronix's TEK049 ASIC has a patented signal path enabling signals to travel from the ADC to both a traditional decimator (scope) and Digital Down Converter (DDC - RF) for independent control of both the time and frequency domains.

    Behind the performance

    The Tektronix-designed TEK049 ASIC contains 12-bit analog-to-digital converters (ADCs) that provide 16 times more resolution than traditional 8-bit ADCs. The TEK049 is paired with the new Tektronix TEK061 front-end amplifier with industry leading low noise that enables the best signal fidelity possible to capture small signals with high resolution.



    Lowest in class noise enabled by new front-end amplifier

    A key attribute to being able to view fine signal details on small, high-speed signals is noise. The higher a measurement systems' intrinsic noise, the less actual signal detail will be visible. This becomes more critical on a digitizer when the vertical settings are set to high sensitivity (like ≤ 10 mV/div) to view small signals that are prevalent in high-speed bus topologies. The 6 Series Low Profile has a new front-end ASIC, the TEK061, that enables breakthrough noise performance at the highest sensitivity settings.

    In addition, a new High Res mode applies a hardware-based unique Finite Impulse Response (FIR) filter based on the selected sample rate. The FIR filter maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the digitizer amplifiers and ADC above the usable bandwidth for the selected sample rate. High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤ 625 MS/s sample rates and 200 MHz of bandwidth.

    Remote control made easy



    Programming the 6 Series Low Profile Digitizer in a test rack for easy remote control has never been easier.

    Automated test equipment and multichannel systems require robust programming capability and are often subject to rack-space constraints and/or speed restraints. The 6 Series Low Profile Digitizer packs 4 high performance 25 GS/s channels into just 2 rack units and comes ready to mount in a rack. Each input can work as a precision analog channel and/or Spectrum channel with multiple remote interfaces that can be transferred over 1000Base-T Ethernet or Super Speed USB 3.0 ports to your local PC for further analysis. With the wide range of programming language support and GitHub repository, there are many ways to easily integrate your new digitizer into a test rack.

    Key remote access features include:

  • 2 rack units high (3.5 inches) with rackmount attached
  • Easy web browser remote access and control
  • LXI 1.5 certified (VXI-11)
  • Ethernet and USB 3.0 (USBTMC) device port with up to 800 Mbps transfer rate
  • Programmers manual with 1000+ VISA commands
  • Programming support: IVI-C, IVI-COM, MATLAB, LabView, Python, VISA, Sockets, and more
  • Tektronix GitHub programming examples


  • Easy remote control using e*Scope in a browser like Chrome, Firefox or Edge

    e*Scope is an easy remote viewing method of controlling a 5 Series or 6 Series oscilloscope or digitizer over a network connection through a standard web browser, in the exact same way that you do in-person. Simply type the instrument IP address into a modern browser and the LXI landing page is displayed, then select the Instrument Control to access e*scope. No drivers needed, it's all self-sustained with the browser, just like you were connected using the instrument screen or an attached monitor. Its fast, responsive and perfect for single or multiple instrument situations to visualize the data.



    Easy remote control using e*Scope across multiple instruments by tiling browser tabs on a monitor for viewing

    Synchronizing



    Synchronize multiple instrument channels within 200 ps using manual deskew and the Aux Trigger input

    When synchronizing multiple instruments its important to have the smallest amount of skew between instrument channels to allow for data timing accuracy. Generally speaking this can be broken down into two types of skew; the part that comes from uncertainty between the aux trigger to analog channel, and the part that comes from trigger jitter. By calibrating out the effects of channel delay to the aux input we can reduce the amount of timing inaccuracy between instrument channels to just the jitter. This process is called deskewing an instrument.

    Deskewing can be done to a reference channel that is simultaneously feeding a trigger edge (preferably over 1 Vpp) into the Aux Trigger input of multiple instruments and to the reference channel. When everything is adjusted, instrument to instrument channels can be within a very tight tolerance of only a couple sample points and within our specification of 200 ps. Whether you have 16 channels or 200 channels, all the data can be easily synchronized and analyzed.

    Enhanced security option

    The optional 6-SEC enhanced security option enables password-protected enabling/disabling of all instrument I/O ports and firmware upgrades. In addition, option 6-SEC provides the highest level of security by ensuring that internal memory never stores user settings or waveform data, in compliance with National Industrial Security Program Operating Manual (NISPOM) DoD 5220.22-M, Chapter 8 requirements and Defense Security Service Manual for the Certification and Accreditation of Classified Systems under the NISPOM. This ensures that you can confidently move the instrument out of a secure area.

    Arbitrary/Function Generator (AFG)

    The instrument contains an optional integrated arbitrary/function generator, perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing. The integrated function generator provides output of predefined waveforms up to 50 MHz for sine, square, pulse, ramp/triangle, DC, noise, sin(x)/x (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac. The AFG can load waveform records up to 128 k points in size from an internal file location or a USB mass storage device.

    The AFG feature is compatible with Tektronix' ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy.

    Digital Voltmeter (DVM) and Trigger Frequency Counter

    The instrument contains an integrated 4-digit digital voltmeter (DVM) and 8-digit trigger frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The trigger frequency counter provides a very precise readout of the frequency of the trigger event on which you’re triggering.

    Both the DVM and trigger frequency counter are available for free and are activated when you register your product.

    Комплектацию Вы можете узнать:
    По тел.: +7 (495) 105 96 88 или
    Написать нам письмо: info@micro-electronics.ru
    Комплектацию Вы можете узнать:
    По тел.: +7 (495) 105 96 88 или
    Написать нам письмо: info@micro-electronics.ru
    Свернуть Развернуть
    Сведения о реестре СИ

    Номер в Госреестре

    Наименование СИ

    Обозначение типа СИ

    Изготовитель

    Срок свидетельства или заводской номер

    Не в реестре
    Свернуть Развернуть
    Сведения о реестре СИ

    Номер в Госреестре

    Наименование СИ

    Обозначение типа СИ

    Изготовитель

    Срок свидетельства или заводской номер

    Не в реестре
    • Spectrum View: A New Way of Performing Multi-Channel Spectrum Analysis on an Oscilloscope
    • New Firmware: Spectrum View on 5 Series and 6 Series MSOs
    Характеристики
    Загрузить технические характеристики

    Specifications

    All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

    Model overview

    LPD64 Low Profile Digitizer
    Characteristic LPD64
    Analog inputs
    Bandwidth (calculated rise time) 1 GHz (400 ps), 2.5 GHz (160 ps), 4 GHz (100 ps), 6 GHz (66.67 ps), 8 GHz (50 ps)
    DC Gain Accuracy 50 Ω: ±2.0% 1, (±2.0% at 2 mV/div, ±4.0% at 1 mV/div, typical)
    50 Ω: ±1.0% 2 of full scale, (±1.0% of full scale at 2 mV/div, ±2.0% at 1 mV/div, typical)
    ADC Resolution 12 bits
    Vertical Resolution (all channels) 8 bits @ 25 GS/s; 8 GHz
    12 bits @ 12.5 GS/s; 4 GHz
    13 bits @ 6.25 GS/s (High Res); 2 GHz
    14 bits @ 3.125 GS/s (High Res); 1 GHz
    15 bits @ 1.25 GS/s (High Res); 500 MHz
    16 bits @ ≤625 MS/s (High Res); 200 MHz
    Sample Rate 25 GS/s on all channels
    Record Length 125 Mpoints on all channels (standard)
    250 Mpoints on all channels (optional)
    Waveform Capture Rate >500,000 wfms/s (Peak Detect, Envelope acquisition mode),
    >30,000 wfms/s (all other acquisition modes)
    Arbitrary/Function Generator (option) 13 predefined waveform types with up to 50 MHz output
    DVM 4-digit DVM (free with product registration)
    Trigger Frequency Counter 8-digit frequency counter (free with product registration)

    1Warranted specification, immediately after SPC, add 2% for every 5 °C change in ambient temperature.

    2Warranted specification, immediately after SPC, add 1% for every 5 °C change in ambient temperature. At full scale is sometimes used to compare to other manufactures.

    Vertical system

    Input coupling
    DC
    Input impedance 50 Ω, DC coupled
    50 Ω ±3%

     

    Input sensitivity range
    50 Ω
    1 mV/div to 1 V/div in a 1-2-5 sequence
     
    Note: 1 mV/div is a 2X digital zoom of 2 mV/div.
    Maximum input voltage

    50 Ω: 2.5 VRMSat <100 mV/div, with peaks ≤ ±20 V (DF ≤ 6.25%)

    50 Ω: 5 VRMSat ≥100 mV/div, with peaks ≤ ±20 V (DF ≤ 6.25%)

    Effective bits (ENOB), typical
    2 mV/div, High Res mode, 50 Ω, 10 MHz input with 90% full screen
    Bandwidth ENOB
    4 GHz 5.9 
    3 GHz 6.1 
    2.5 GHz 6.2 
    2 GHz 6.35 
    1 GHz 6.8 
    500 MHz 7.2 
    350 MHz 7.4 
    250 MHz 7.5 
    200 MHz 7.75 
    20 MHz 8.8 

     

    50 mV/div, High Res mode, 50 Ω, 10 MHz input with 90% full screen
    Bandwidth ENOB
    4 GHz 7.25 
    3 GHz 7.5 
    2.5 GHz 7.6 
    2 GHz 7.8 
    1 GHz 8.2 
    500 MHz 8.5 
    350 MHz 8.8 
    250 MHz 8.9 
    200 MHz
    20 MHz 9.8 
    2 mV/div, Sample mode, 50 Ω, 10 MHz input with 90% full screen
    Bandwidth ENOB
    8 GHz 5.1 
    7 GHz 5.3 
    6 GHz 5.5 
    5 GHz 5.65 
    4 GHz 5.9 
    3 GHz 6.05 
    2.5 GHz 6.2 
    2 GHz 6.35 
    1 GHz 6.8 
    500 MHz 7.2 
    350 MHz 7.3 
    250 MHz 7.5 
    200 MHz 7.3 
    20 MHz 7.6 

     

    50 mV/div, Sample mode, 50 Ω, 10 MHz input with 90% full screen
    Bandwidth ENOB
    8 GHz 6.5 
    7 GHz 6.6 
    6 GHz 6.8 
    5 GHz
    4 GHz 7.2 
    3 GHz 7.4 
    2.5 GHz 7.6 
    2 GHz 7.7 
    1 GHz 8.2 
    500 MHz 8.4 
    350 MHz 8.7 
    250 MHz 8.8 
    200 MHz 7.8 
    20 MHz 7.9 
    DC balance

    0.1 div with DC-50 Ω digitizer input impedance (50 Ω terminated)

    0.2 div at 1 mV/div with DC-50 Ω digitizer input impedance (50 Ω terminated)

    Position range
    ±5 divisions
    Offset ranges, maximum
     

    Input signal cannot exceed maximum input voltage for the 50 Ω input path.

    Volts/div Setting Maximum offset range, 50 Ω Input
    1 mV/div - 99 mV/div ±1 V
    100 mV/div - 1 V/div ±10 V
    Offset accuracy

    ±(0.005 X | offset - position | + DC balance); Offset, position, and DC Balance in units of Volts

    Bandwidth selections
    8 GHz model, 50 Ohm
    20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, 2.5 GHz, 3 GHz, 4 GHz, 5 GHz, 6 GHz, 7 GHz, and 8 GHz
    6 GHz model, 50 Ohm
    20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, 2.5 GHz, 3 GHz, 4 GHz, 5 GHz, and 6 GHz
    4 GHz model, 50 Ohm
    20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, 2.5 GHz, 3 GHz, and 4 GHz
    2.5 GHz model, 50 Ohm
    20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, and 2.5 GHz
    1 GHz model, 50 Ohm
    20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, and 1 GHz
    Bandwidth filtering optimized for
    Flatness or Step response
    Random noise, RMS, typical
    50 Ω, typical
    25 GS/s, Sample Mode, RMS
    V/div 1 mV/div 2 mV/div 5 mV/div 10 mV/div 20 mV/div 50 mV/div 100 mV/div 1 V/div
    8 GHz 158 μV 158 μV 208 μV 342 μV 630 μV 1.49 mV 3.46 mV 29.7 mV
    7 GHz 141 μV 143 μV 192 μV 311 μV 562 μV 1.31 mV 3.11 mV 26.2 mV
    6 GHz 127 μV 127 μV 165 μV 274 μV 489 μV 1.18 mV 2.71 mV 23.6 mV
    5 GHz 112 μV 113 μV 149 μV 239 μV 446 μV 1.05 mV 2.42 mV 21.1 mV
    12.5 GS/s, HiRes Mode, RMS
    V/div 1 mV/div 2 mV/div 5 mV/div 10 mV/div 20 mV/div 50 mV/div 100 mV/div 1 V/div
    4 GHz 97.4 μV 98.7 μV 124 μV 192 μV 344 μV 817 μV 1.92 mV 16.3 mV
    3 GHz 82.9 μV 84 μV 105 μV 160 μV 282 μV 680 μV 1.62 mV 13.6 mV
    2.5 GHz 76.5 μV 77.5 μV 93.8 μV 144 μV 257 μV 606 μV 1.44 mV 12.1 mV
    2 GHz 68.1 μV 69.1 μV 83.6 μV 131 μV 226 μV 528 μV 1.28 mV 10.6 mV
    1 GHz 54.8 μV 51.2 μV 63.4 μV 90.9 μV 160 μV 378 μV 941 μV 7.65 mV
    500 MHz 39.7 μV 39.8 μV 48.1 μV 65.1 μV 115 μV 280 μV 666 μV 5.6 mV
    350 MHz 33.8 μV 33.5 μV 40 μV 54.8 μV 94.3 μV 217 μV 560 μV 4.35 mV
    250 MHz 30.8 μV 31.2 μV 36.1 μV 49.9 μV 80.3 μV 187 μV 482 μV 3.75 mV
    200 MHz 25.3 μV 25.4 μV 29.7 μV 44 μV 70.7 μV 165 μV 445 μV 3.3 mV
    20 MHz 8.68 μV 8.9 μV 10.4 μV 15.1 μV 27.5 μV 70.4 μV 158 μV 1.41 mV
    Crosstalk (channel isolation), typical

    ≥ -80 dB up to 2 GHz

    ≥ -65 dB up to 4 GHz

    ≥ -55 dB up to 8 GHz

    for any two channels set to 200 mV/div.

    Horizontal system

    Time base range
    40 ps/div to 1,000 s/div
    Sample rate range

    6.25 S/s to 25 GS/s (real time)

    50 GS/s to 2.5 TS/s (interpolated)

    Record length range

    All acquisition modes are 250 M maximum record length, down to 1 k minimum record length, adjustable in 1 sample increments.

    Standard: 125 Mpoints

    Option 6-RL-2: 250 Mpoints

    Seconds/Division range
    Record length 1 K 10 K 100 K 1 M 10 M 62.5 M 125 M 250 M
    Standard: 125 M 40 ps - 16 s 400 ps - 160 s 4 ns - 1000 s 2.5 μs - 1000 s 5 μs - 1000 s N/A
    Option 6-RL-2: 250 M 40 ps - 16 s 400 ps - 160 s 4 ps - 1000 s 2.5 μs - 1000 s 5 μs - 1000 s 10 μs - 1000 s
    Aperture uncertainty
    Time duration Typical jitter
    <1 μs 80 fs
    <1 ms 130 fs
    Timebase accuracy

    ±1.0 x10-7over any ≥1 ms time interval

    Description Specification
    Factory Tolerance ±12 ppb. At calibration, 25 °C ambient, over any ≥1 ms interval
    Temperature stability ±20 ppb across the full operating range of 0 °C to 50 °C, after a sufficient soak time at the temperature. Tested at operating temperatures
    Crystal aging ±300 ppb. Frequency tolerance change at 25 °C over a period of 1 year
    Delta-time measurement accuracy

    equation-28636

     

    equation-28636

     (assume edge shape that results from Gaussian filter response)

    The formula to calculate delta-time measurement accuracy (DTA) for a given instrument setting and input signal assumes insignificant signal content above Nyquist frequency, where:

    SR 1= Slew Rate (1stEdge) around 1stpoint in measurement

    SR 2= Slew Rate (2ndEdge) around 2ndpoint in measurement

    N = input-referred guaranteed noise limit (VRMS)

    TBA = timebase accuracy or Reference Frequency Error

    t p= delta-time measurement duration (sec)

    1Dynamic noise is noise that appears with a signal applied (such as distortion or interleave errors).

    Maximum duration at highest sample rate

    5 ms (standard) or 10 ms (option 6-RL-2, 250 Mpoints)

    Time base delay time range
    -10 divisions to 5,000 s
    Deskew range

    -125 ns to +125 ns with a resolution of 40 ps (for Peak Detect and Envelope acquisition modes).

    -125 ns to +125 ns with a resolution of 1 ps (for all other acquisition modes).

    Delay between analog channels, full bandwidth, typical

    ≤ 10 ps for any two channels with input impedance set to 50 Ω, DC coupling with equal Volts/div or above 10 mV/div

    Trigger system

    Trigger modes
    Auto, Normal, and Single
    Trigger coupling

    DC, HF Reject (attenuates > 50 kHz), LF Reject (attenuates < 50 kHz), noise reject (reduces sensitivity)

    Trigger bandwidth (edge, pulse and logic), typical
    Model Trigger type Trigger bandwidth
    8 GHz Edge 8 GHz
    8 GHz Pulse, Logic 4 GHz
    6 GHz Edge 6 GHz
    6 GHz Pulse, Logic 4 GHz
    4 GHz, 2.5 GHz, 1 GHz: Edge, Pulse, Logic Product Bandwidth
    Edge-type trigger sensitivity, DC coupled, typical
    Path Range Specification
    50 Ω path 1 mV/div to 9.98 mV/div 3.0 div from DC to instrument bandwidth
    ≥ 10 mV/div < 1.0 division from DC to instrument bandwidth
    Line 90 V to 264 V line voltage at 50 - 60 Hz line frequency 103.5 V to 126.5 V
    AUX Trigger in 250 mVPP, DC to 400 MHz
    Edge-type trigger sensitivity, not DC coupled, typical
    Trigger Coupling Typical Sensitivity
    NOISE REJ 2.5 times the DC Coupled limits
    HF REJ 1.0 times the DC Coupled limits from DC to 50 kHz. Attenuates signals above 50 kHz.
    LF REJ 1.5 times the DC Coupled limits for frequencies above 50 kHz. Attenuates signals below 50 kHz.
    Trigger jitter, typical

    ≤ 1.5 psRMSfor sample mode and edge-type trigger

    ≤ 7 psRMS≤ 2 psRMSfor edge-type trigger and FastAcq mode

    ≤ 40 psRMSfor non edge-type trigger modes

    ≤ 40 psRMSfor AUX trigger in, Sample acquisition mode, edge trigger

    ≤ 40 psRMSfor AUX trigger in, FastAcq acquisition mode, edge trigger

    Trigger jitter, AUX input, typical

    ≤ 200 psRMSfor sample mode and edge-type trigger

    ≤ 220 psRMSfor edge-type trigger and FastAcq mode

    AUX In trigger skew between instruments, typical

    ±100 ps jitter on each instrument with <450 ps skew; <550 ps total between instruments. Can be manually deskewed so channel-to-channel total skew is <200ps between instruments using AUX In.

    Skew improves for pulse input voltages ≥1 Vpp

    Trigger level ranges
    Source Range
    Any Channel ±5 divs from center of screen
    Aux In Trigger ±5 V
    Line Fixed at about 50% of line voltage

    This specification applies to logic and pulse thresholds.

    Trigger frequency counter

    8-digits (free with product registration)

    Trigger types
    Edge:
    Positive, negative, or either slope on any channel. Coupling includes DC, AC, noise reject, HF reject, and LF reject
    Pulse Width:

    Trigger on width of positive or negative pulses. Event can be time- or logic-qualified

    Timeout:
    Trigger on an event which remains high, low, or either, for a specified time period. Event can be logic-qualified
    Runt:
    Trigger on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Event can be time- or logic-qualified
    Window:
    Trigger on an event that enters, exits, stays inside or stays outside of a window defined by two user-adjustable thresholds. Event can be time- or logic-qualified
    Logic:
    Trigger when logic pattern goes true, goes false, or occurs coincident with a clock edge. Pattern (AND, OR, NAND, NOR) specified for all input channels defined as high, low, or don't care. Logic pattern going true can be time-qualified
    Setup & Hold:
    Trigger on violations of both setup time and hold time between clock and data present on any input channels
    Rise / Fall Time:
    Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative, or either. Event can be logic-qualified
    Sequence:

    Trigger on B event X time or N events after A trigger with a reset on C event. In general, A and B trigger events can be set to any trigger type with a few exceptions: logic qualification is not supported, if A event or B event is set to Setup & Hold, then the other must be set to Edge, and Ethernet and High Speed USB (480 Mbps) are not supported

    Visual trigger
    Qualifies standard triggers by scanning all waveform acquisitions and comparing them to on-screen areas (geometric shapes). An unlimited number of areas can be defined with In, Out, or Don't Care as the qualifier for each area. A boolean expression can be defined using any combination of visual trigger areas to further qualify the events that get stored into acquisition memory. Shapes include rectangle, triangle, trapezoid, hexagon and user-defined
    Parallel Bus:
    Trigger on a parallel bus data value. Parallel bus can be from 1 to 4 bits (from the analog channels) in size. Supports Binary and Hex radices
    I2C Bus (option 6-SREMBD):
    Trigger on Start, Repeated Start, Stop, Missing ACK, Address (7 or 10 bit), Data, or Address and Data on I2C buses up to 10 Mb/s
    SPI Bus (option 6-SREMBD):
    Trigger on Slave Select, Idle Time, or Data (1-16 words) on SPI buses up to 20 Mb/s
    RS-232/422/485/
    UART Bus (option 6-SRCOMP):
    Trigger on Start Bit, End of Packet, Data, and Parity Error up to 15 Mb/s
    CAN Bus (option 6-SRAUTO):
    Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier, Data, Identifier and Data, End Of Frame, Missing Ack, and Bit Stuff Error on CAN buses up to 1 Mb/s
    CAN FD Bus (option 6-SRAUTO):
    Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier (Standard or Extended), Data (1-8 bytes), Identifier and Data, End Of Frame, Error (Missing Ack, Bit Stuffing Error, FD Form Error, Any Error) on CAN FD buses up to 16 Mb/s
    LIN Bus (option 6-SRAUTO):
    Trigger on Sync, Identifier, Data, Identifier and Data, Wakeup Frame, Sleep Frame, and Error on LIN buses up to 1 Mb/s
    FlexRay Bus (option 6-SRAUTO):
    Trigger on Start of Frame, Indicator Bits (Normal, Payload, Null, Sync, Startup), Frame ID, Cycle Count, Header Fields (Indicator Bits, Identifier, Payload Length, Header CRC, and Cycle Count), Identifier, Data, Identifier and Data, End Of Frame, and Errors on FlexRay buses up to 10 Mb/s
    SENT Bus (option 6-SRAUTOSEN)
    Trigger on Start of Packet, Fast Channel Status and Data, Slow Channel Message ID and Data, and CRC Errors
    SPMI Bus (option 6-SRPM):
    Trigger on Sequence Start Condition, Reset, Sleep, Shutdown, Wakeup, Authenticate, Master Read, Master Write, Register Read, Register Write, Extended Register Read, Extended Register Write, Extended Register Read Long, Extended Register Write Long, Device Descriptor Block Master Read, Device Descriptor Block Slave Read, Register 0 Write, Transfer Bus Ownership, and Parity Error
    USB 2.0 LS/FS/HS Bus (option 6-SRUSB2):
    Trigger on Sync, Reset, Suspend, Resume, End of Packet, Token (Address) Packet, Data Packet, Handshake Packet, Special Packet, Error on USB buses up to 480 Mb/s
    Ethernet Bus (option 6-SRENET):
    Trigger on Start of Frame, MAC Addresses, MAC Q-tag, MAC Length/Type, MAC Data, IP Header, TCP Header, TCP/IPV4 Data, End of Packet, and FCS (CRC) Error on 10BASE-T and 100BASE-TX buses
    Audio (I2S, LJ, RJ, TDM) Bus (option 6-SRAUDIO):
    Trigger on Word Select, Frame Sync, or Data. Maximum data rate for I2S/LJ/RJ is 12.5 Mb/s. Maximum data rate for TDM is 25 Mb/s
    MIL-STD-1553 Bus (option 6-SRAERO):
    Trigger on Sync, Command (Transmit/Receive Bit, Parity, Subaddress / Mode, Word Count / Mode Count, RT Address), Status (Parity, Message Error, Instrumentation, Service Request, Broadcast Command Received, Busy, Subsystem Flag, Dynamic Bus Control Acceptance, Terminal Flag), Data, Time (RT/IMG), and Error (Parity Error, Sync Error, Manchester Error, Non-contiguous Data) on MIL-STD-1553 buses
    ARINC 429 Bus (option 6-SRAERO):
    Trigger on Word Start, Label, Data, Label and Data, Word End, and Error (Any Error, Parity Error, Word Error, Gap Error) on ARINC 429 buses up to 1 Mb/s
    Trigger holdoff range
    0 ns to 10 seconds

    Acquisition system

    Sample
    Acquires sampled values
    Peak Detect
    Captures glitches as narrow as at all sweep speeds
    Averaging
    From 2 to 10,240 waveforms
    Envelope
    Min-max envelope reflecting Peak Detect data over multiple acquisitions
    High Res

    Applies a unique Finite Impulse Response (FIR) filter for each sample rate that maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate.

    High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤ 625 MS/s sample rates.

    FastAcq®

    FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events.

    Maximum waveform capture rate:

      >500,000 wfms/s (Peak Detect or Envelope Acquisition mode)

      >30,000 wfms/s (All other acquisition modes)

    Roll mode

    Scrolls sequential waveform points across the display in a right-to-left rolling motion, at timebase speeds of 40 ms/div and slower, when in Auto trigger mode.

    FastFrame™

    Acquisition memory divided into segments.

    Maximum trigger rate >5,000,000 waveforms per second

    Minimum frame size = 50 points

    Maximum Number of Frames: For frame size ≥ 1,000 points, maximum number of frames = record length / frame size.

    For 50 point frames, maximum number of frames = 691,000 

    Waveform measurements

    Cursor types
    Waveform, V Bars, H Bars, and V&H Bars
    DC voltage measurement accuracy, Average acquisition mode
    Measurement Type DC Accuracy (In Volts)
    Average of ≥ 16 waveforms ±((DC Gain Accuracy) * |reading - (offset - position)| + Offset Accuracy + 0.05 * V/div setting)
    Delta volts between any two averages of ≥ 16 waveforms acquired with the same oscilloscope setup and ambient conditions ±(DC Gain Accuracy * |reading| + 0.1 div)
    Automatic measurements

    36, of which an unlimited number can be displayed as either individual measurement badges or collectively in a measurement results table

    Amplitude measurements

    Amplitude, Maximum, Minimum, Peak-to-Peak, Positive Overshoot, Negative Overshoot, Mean, RMS, AC RMS, Top, Base, and Area

    Timing measurements

    Period, Frequency, Unit Interval, Data Rate, Positive Pulse Width, Negative Pulse Width, Skew, Delay, Rise Time, Fall Time, Phase, Rising Slew Rate, Falling Slew Rate, Burst Width, Positive Duty Cycle, Negative Duty Cycle, Time Outside Level, Setup Time, Hold Time, Duration N-Periods, High Time, and Low Time

    Jitter measurements (standard)
    TIE and Phase Noise
    Measurement statistics
    Mean, Standard Deviation, Maximum, Minimum, and Population. Statistics are available on both the current acquisition and all acquisitions
    Reference levels
    User-definable reference levels for automatic measurements can be specified in either percent or units. Reference levels can be set to global for all measurements, per source channel or signal, or unique for each measurement
    Gating
    Screen, Cursors, Logic, Search, or Time. Specifies the region of an acquisition in which to take measurements. Gating can be set to Global (affects all measurements set to Global) or Local (all measurements can have a unique Time gate setting; only one Local gate is available for Screen, Cursors, Logic, and Search actions).
    Measurement plots
    Time Trend, Histogram, and Spectrum plots are available for all standard measurements
    Jitter analysis adds the following:
    Measurements

    Jitter Summary, TJ@BER, RJ- δδ, DJ- δδ, PJ, RJ, DJ, DDJ, DCD, SRJ, J2, J9, NPJ, F/2, F/4, F/8, Eye Height, Eye Height@BER, Eye Width, Eye Width@BER, Eye High, Eye Low, Q-Factor, Bit High, Bit Low, Bit Amplitude, DC Common Mode, AC Common Mode (Pk-Pk), Differential Crossover, T/nT Ratio, SSC Freq Dev, SSC Modulation Rate

    Measurement Plots
    Eye Diagram and Jitter Bathtub
    Eye Diagram Mask Testing

    Automated mask pass/fail testing

    Power analysis adds the following:
    Measurements

    Input Analysis (Frequency, VRMS, IRMS, voltage and current Crest Factors, True Power, Apparent Power, Reactive Power, Power Factor, Phase Angle, Harmonics, Inrush Current, Input Capacitance )

    Amplitude Analysis (Cycle Amplitude, Cycle Top, Cycle Base, Cycle Maximum, Cycle Minimum, Cycle Peak-to-Peak)

    Timing Analysis (Period, Frequency, Negative Duty Cycle, Positive Duty Cycle, Negative Pulse Width, Positive Pulse Width)

    Switching Analysis (Switching Loss, dv/dt, di/dt, Safe Operating Area, RDSon)

    Magnetic Analysis (Inductance, I vs. Intg(V), Magnetic Loss, Magnetic Property)

    Output Analysis (Line Ripple, Switching Ripple, Efficiency, Turn-on Time, Turn-off Time)

    Frequency Response Analysis (Control Loop Response Bode Plot, Power Supply Rejection Ratio, Impedance)

    Measurement Plots
    Harmonics Bar Graph, Switching Loss Trajectory Plot, and Safe Operating Area
    Digital Power Management adds the following:
    Measurements

    Ripple Analysis (Ripple)

    Transient Analysis (Overshoot, Undershoot)

    Power Sequence Analysis (Turn-on, Turn-off)

    DDR3/LPDDR3 memory debug and analysis option (6-DBDDR3) adds the following:
    Measurements

    Amplitude Measurements (AOS, AUS, Vix(ac), AOS Per tCK, AUS Per tCK, AOS Per UI, AUS Per UI)

    Time Measurements (tRPRE, tWPRE, tPST, Hold Diff, Setup Diff, tCH(avg), tCK(avg), tCL(avg), tCH(abs), tCL(abs), tJIT(duty), tJIT(per), tJIT(cc), tERR(n), tERR(m-n), tDQSCK, tCMD-CMD, tCKSRE, tCKSRX)

    Waveform math

    Number of math waveforms
    Unlimited
    Arithmetic
    Add, subtract, multiply, and divide waveforms and scalars
    Algebraic expressions
    Define extensive algebraic expressions including waveforms, scalars, user-adjustable variables, and results of parametric measurements. Perform math on math using complex equations. For example (Integral (CH1 - Mean(CH1)) X 1.414 X VAR1)
    Math functions
    Invert, Integrate, Differentiate, Square Root, Exponential, Log 10, Log e, Abs, Ceiling, Floor, Min, Max, Degrees, Radians, Sin, Cos, Tan, ASin, ACos, and ATan
    Relational
    Boolean result of comparison >, <, ≥, ≤, =, and ≠
    Logic
    AND, OR, NAND, NOR, XOR, and EQV
    Filtering function
    User-definable filters. Users specify a file containing the coefficients of the filter
    FFT functions
    Spectral Magnitude and Phase, and Real and Imaginary Spectra
    FFT vertical units

    Magnitude: Linear and Log (dBm)

    Phase: Degrees, Radians, and Group Delay

    FFT window functions
    Hanning, Rectangular, Hamming, Blackman-Harris, Flattop2, Gaussian, Kaiser-Bessel, and TekExp

    Spectrum View

    Center Frequency
    Limited by instrument analog bandwidth
    Span
    74.5 Hz – 1.25 GHz (standard)

    74.5 Hz – 2 GHz (option 6-SV-BW-1)

    Coarse adjustment in a 1-2-5 sequence

    RF vs. Time Traces
    Magnitude vs. time, Frequency vs. time, Phase vs. Time
    Resolution Bandwidth (RBW)
    93 μHz to 62.5 MHz

    93 μHz to 100 MHz (option 6-SV-BW-1)

    Window types and factors
    Window type Factor
    Blackman-Harris 1.90 
    Flat-Top 2  3.77 
    Hamming 1.30 
    Hanning 1.44 
    Kaiser-Bessel 2.23 
    Rectangular 0.89 
    Spectrum Time
    FFT Window Factor / RBW
    Reference level
    Reference level is automatically set by the analog channel Volts/div setting

    Setting range: -42 dBm to +44 dBm

    Vertical Position
    -100 divs to +100 divs
    Vertical units
    dBm, dBµW, dBmV, dBµV, dBmA, dBµA

    Search

    Number of searches
    Unlimited
    Search types

    Search through long records to find all occurrences of user specified criteria including edges, pulse widths, timeouts, runt pulses, window violations, logic patterns, setup & hold violations, rise/fall times, and bus protocol events. Search results can be viewed in the Waveform View or in the Results table.

    Display

    Display type
    External monitor
     
    1,920 horizontal × 1,080 vertical pixels (High Definition)
    Display modes

    Overlay: traditional oscilloscope display where traces overlay each other

    Stacked: display mode where each waveform is placed in its own slice and can take advantage of the full ADC range while still being visually separated from other waveforms. Groups of channels can also be overlaid within a slice to simplify visual comparison of signals.

    Zoom
    Horizontal and vertical zooming is supported in all waveform and plot views.
    Interpolation
    Sin(x)/x and Linear
    Waveform styles
    Vectors, dots, variable persistence, and infinite persistence
    Graticules
    Movable and fixed graticules, selectable between Grid, Time, Full, and None
    Color palettes
    Normal and inverted for screen captures

    Individual waveform colors are user-selectable

    Format
    YT, XY, and XYZ
    Local Language User Interface
    English, Japanese, Simplified Chinese, Traditional Chinese, French, German, Italian, Spanish, Portuguese, Russian, Korean
    Local Language Help
    English, Japanese, Simplified Chinese

    Arbitrary-Function Generator optional

    Function types
    Arbitrary, sine, square, pulse, ramp, triangle, DC level, Gaussian, Lorentz, exponential rise/fall, sin(x)/x, random noise, Haversine, Cardiac
    Amplitude range
    Values are peak-to-peak voltages
    Waveform 50 Ω 1 MΩ
    Arbitrary 10 mV to 2.5 V 20 mV to 5 V
    Sine 10 mV to 2.5 V 20 mV to 5 V
    Square 10 mV to 2.5 V 20 mV to 5 V
    Pulse 10 mV to 2.5 V 20 mV to 5 V
    Ramp 10 mV to 2.5 V 20 mV to 5 V
    Triangle 10 mV to 2.5 V 20 mV to 5 V
    Gaussian 10 mV to 1.25 V 20 mV to 2.5 V
    Lorentz 10 mV to 1.2 V 20 mV to 2.4 V
    Exponential Rise 10 mV to 1.25 V 20 mV to 2.5 V
    Exponential Fall 10 mV to 1.25 V 20 mV to 2.5 V
    Sine(x)/x 10 mV to 1.5 V 20 mV to 3.0 V
    Random Noise 10 mV to 2.5 V 20 mV to 5 V
    Haversine 10 mV to 1.25 V 20 mV to 2.5 V
    Cardiac 10 mV to 2.5 V 20 mV to 5 V
    Sine waveform
    Frequency range
    0.1 Hz to 50 MHz
    Frequency setting resolution
    0.1 Hz
    Frequency accuracy
    130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)

    This is for Sine, Ramp, Square and Pulse waveforms only.

    Amplitude range
    20 mVpp to 5 Vpp into Hi-Z; 10 mVpp to 2.5 Vpp into 50 Ω
    Amplitude flatness, typical

    ±0.5 dB at 1 kHz

    ±1.5 dB at 1 kHz for < 20 mVppamplitudes

    Total harmonic distortion, typical

    1% for amplitude ≥ 200 mVppinto 50 Ω load

    2.5% for amplitude > 50 mV AND < 200 mVppinto 50 Ω load

    This is for Sine wave only.

    Spurious free dynamic range, typical

    40 dB (Vpp≥ 0.1 V); 30 dB (Vpp≥ 0.02 V), 50 Ω load

    Square and pulse waveform
    Frequency range
    0.1 Hz to 25 MHz
    Frequency setting resolution
    0.1 Hz
    Frequency accuracy
    130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)
    Amplitude range
    20 mVpp to 5 Vpp into Hi-Z; 10 mVpp to 2.5 Vpp into 50 Ω
    Duty cycle range
    10% - 90% or 10 ns minimum pulse, whichever is larger

    Minimum pulse time applies to both on and off time, so maximum duty cycle will reduce at higher frequencies to maintain 10 ns off time

    Duty cycle resolution
    0.1%
    Minimum pulse width, typical
    10 ns. This is the minimum time for either on or off duration.
    Rise/Fall time, typical
    5 ns, 10% - 90%
    Pulse width resolution
    100 ps
    Overshoot, typical
    < % for signal steps greater than 100 mVpp

    This applies to overshoot of the positive-going transition (+overshoot) and of the negative-going (-overshoot) transition

    Asymmetry, typical
    ±1% ±5 ns, at 50% duty cycle
    Jitter, typical
    < 60 ps TIERMS, ≥ 100 mVpp amplitude, 40%-60% duty cycle
    Ramp and triangle waveform
    Frequency range
    0.1 Hz to 500 kHz
    Frequency setting resolution
    0.1 Hz
    Frequency accuracy
    130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)
    Amplitude range
    20 mVpp to 5 Vpp into Hi-Z; 10 mVpp to 2.5 Vpp into 50 Ω
    Variable symmetry
    0% - 100%
    Symmetry resolution
    0.1%
    DC level range

    ±2.5 V into Hi-Z

    ±1.25 V into 50 Ω

    Random noise amplitude range

    20 mVppto 5 Vppinto Hi-Z

    10 mVppto 2.5 Vppinto 50 Ω

    Sin(x)/x
    Maximum frequency
    2 MHz
    Gaussian pulse, Haversine, and Lorentz pulse
    Maximum frequency
    5 MHz
    Lorentz pulse
    Frequency range
    0.1 Hz to 5 MHz
    Amplitude range
    20 mVpp to 2.4 Vpp into Hi-Z

    10 mVppto 1.2 Vppinto 50 Ω

    Cardiac
    Frequency range
    0.1 Hz to 500 kHz
    Amplitude range
    20 mVpp to 5 Vpp into Hi-Z

    10 mVppto 2.5 Vppinto 50 Ω

    Arbitrary
    Memory depth
    1 to 128 k
    Amplitude range
    20 mVpp to 5 Vpp into Hi-Z

    10 mVppto 2.5 Vppinto 50 Ω

    Repetition rate
    0.1 Hz to 25 MHz
    Sample rate
    250 MS/s
    Signal amplitude accuracy
    ±[ (1.5% of peak-to-peak amplitude setting) + (1.5% of absolute DC offset setting) + 1 mV ] (frequency = 1 kHz)
    Signal amplitude resolution

    1 mV (Hi-Z)

    500 μV (50 Ω)

    Sine and ramp frequency accuracy

    130 ppm (frequency ≤10 kHz)

    50 ppm (frequency >10 kHz)

    DC offset range

    ±2.5 V into Hi-Z

    ±1.25 V into 50 Ω

    DC offset resolution

    1 mV (Hi-Z)

    500 μV (50 Ω)

    DC offset accuracy

    ±[ (1.5% of absolute offset voltage setting) + 1 mV ]

    Add 3 mV of uncertainty per 10 °C change from 25 °C ambient

    Digital volt meter (DVM)

    Measurement types

    DC, ACRMS+DC, ACRMS, Trigger frequency count

    Voltage resolution
    4 digits
    Voltage accuracy
    DC:

    ±((1.5% * |reading - offset - position|) + (0.5% * |(offset - position)|) + (0.1 * Volts/div))

    De-rated at 0.100%/°C of |reading - offset - position| above 30 °C

    Signal ± 5 divisions from screen center

    AC:

    ± 3% (40 Hz to 1 kHz) with no harmonic content outside 40 Hz to 1 kHz

    AC, typical: ± 2% (20 Hz to 10 kHz)

    For AC measurements, the input channel vertical settings must allow the VPPinput signal to cover between 4 and 10 divisions and must be fully visible on the screen

    Trigger frequency counter

    Resolution

    8-digits

    Accuracy

    ±(1 count + time base accuracy * input frequency)

    The signal must be at least 8 mVppor 2 div, whichever is greater.

    Maximum input frequency

    10 Hz to maximum bandwidth of the analog channel

    The signal must be at least 8 mVppor 2 div, whichever is greater.

    Processor system

    Host processor
    Intel i5-4400E, 2.7 GHz, 64-bit, dual core processor
    Internal storage
    ≥ 80 GB. Form factor is an 80 mm m.2 card with a SATA-3 interface

     

    Operating system
    Closed Embedded OS. No access to OS file system.

    Input-Output ports

    DisplayPort connector

    A 20-pin DisplayPort connector; connect to show the oscilloscope display on an external monitor or projector

    DVI connector

    A 29-pin DVI-I connector; connect to show the oscilloscope display on an external monitor or projector

    VGA

    DB-15 female connector; connect to show the oscilloscope display on an external monitor or projector

    Probe compensator signal, typical

     

    Connection:
    Connectors are located on the lower front right of the instrument
    Amplitude:
    0 to 2.5 V
    Frequency:
    1 kHz
    Source impedance:
    1 kΩ
    External reference input
    The time-base system can phase lock to an external 10 MHz reference signal .

    There are two ranges for the reference clock.

    The instrument can accept a high-accuracy reference clock of 10 MHz ±2 ppm or a lower-accuracy reference clock of 10 MHz ±1 kppm.

    USB interface (Host, Device ports)

    Front panel USB Host ports: Two USB 2.0 Hi-Speed ports, one USB 3.0 SuperSpeed port

    Rear panel USB Host ports: Two USB 2.0 Hi-Speed ports, two USB 3.0 SuperSpeed ports

    Rear panel USB Device port: One USB 3.0 SuperSpeed Device port providing USBTMC support and up to 800 Mbps transfer speeds

    Ethernet interface
    10/100/1000 Mb/s
    Auxiliary output

    Rear-panel BNC connector. Output can be configured to provide a positive or negative pulse out when the oscilloscope triggers, the internal oscilloscope reference clock out, or an AFG sync pulse

    Characteristic Limits
    Vout (HI) ≥ 2.5 V open circuit; ≥ 1.0 V into a 50 Ω load to ground
    Vout (LO) ≤ 0.7 V into a load of ≤ 4 mA; ≤0.25 V into a 50 Ω load to ground
    Kensington-style lock
    Rear-panel security slot connects to standard Kensington-style lock
    LXI

    Class: LXI 2016 

    Version: 1.5 

    Power source

    Power
    Power consumption

    360 Watts maximum

    Source voltage
    100 - 240 V ±10% at 50 Hz to 60 Hz

    115 V ±10% at 400 Hz

    Physical characteristics

    Dimensions

    Height: 3.44 in (87.3 mm)

    Width: 17.01 in (432 mm)

    Depth: 23.85 in (605.7 mm)

    Fits rack depths from 24 inches to 32 inches

    Weight

    29.4 lbs (13.34 kg)

    Cooling
    The clearance requirement for adequate cooling is 2.0 in (50.8 mm) on the left and right sides of the instrument. Air flows from left to right through the instrument.
    Rackmount configuration
    2U rack mount kit is included as standard configuration

    Environmental specifications

    Temperature
    Operating
    +0 °C to +50 °C (32 °F to 122 °F)
    Non-operating

    -20 °C to +60 °C (-4 °F to 140 °F)

    Humidity
    Operating

    5% to 90% relative humidity (% RH) at up to +40 °C

    5% to RH above +40 °C up to +50 °C, noncondensing

    Non-operating

    5% to 90% relative humidity (% RH) at up to +60 °C, noncondensing

    Altitude
    Operating
    Up to 3,000 meters (9,843 feet)
    Non-operating
    Up to 12,000 meters (39,370 feet)

    EMC Environmental and Safety

    Regulatory

    CE marked for the European Union and CSA approved for the USA and Canada

    RoHS compliant

    Software

    Software
    IVI driver

    Provides a standard instrument programming interface for common applications such as LabVIEW, LabWindows/CVI, Microsoft .NET, and MATLAB. Compatible with Python, C/C++/C# and many other languages through VISA.

    e*Scope®

    Enables control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Transfer and save settings, waveforms, measurements, and screen images or make live control changes to settings on the oscilloscope directly from the web browser.

    LXI Web interface

    Connect to the oscilloscope through a standard Web browser by simply entering the oscilloscope's IP address or network name in the address bar of the browser. The Web interface enables viewing of instrument status and configuration, status and modification of network settings, and instrument control through the e*Scope web-based remote control. All web interaction conforms to LXI specification, version 1.5.

    Programming Examples

    Programming with the 5 & 6 Series platforms has never been easier. With a programmers manual and a GitHub site you have many commands and examples to help you get started remotely automating your instrument. .

    Модели и опции
    Товар
    Модели и Опции
    Описание
    Цена Заказать
    Модели
    6-BW-1000
    Низкопрофильный дигитайзер, 2U стоечного типа, 4 канала, 1 ГГц
    $44 982
    - шт +
    6-BW-2500
    Низкопрофильный дигитайзер, 2U стоечного типа, 4 канала, 2,5 ГГц
    $54 180
    - шт +
    6-BW-4000
    Низкопрофильный дигитайзер, 2U стоечного типа, 4 канала, 4 ГГц
    $68 370
    - шт +
    6-BW-6000
    Низкопрофильный дигитайзер, 2U стоечного типа, 4 канала, 6 ГГц
    $103 329
    - шт +
    6-BW-8000
    Низкопрофильный дигитайзер, 2U стоечного типа, 4 канала, 8 ГГц
    $134 160
    - шт +
    Опции
    6-DPM
    Цифровое управление питанием
    $8 360.04
    - шт +
    6-PAM3
    Анализ PAM3
    $9 783.28
    - шт +
    6-PWR
    Измерения и анализ электрической мощности
    $5 334.16
    - шт +
    6-SV-BW-1
    Опция расширения захвата сигнала в частотной области до 500 МГц
    $29 062.80
    - шт +
    6-SV-RFVT
    Опция частотного анализа относительно временной области
    $10 775.96
    - шт +
    6-RL-2
    Расширение длины записи от 125 Мвыб/канал до 250 Мвыб/канал
    $8 431.80
    - шт +
    6-AFG
    Генератор функций/сигналов произвольной формы
    $1 949.48
    - шт +
    6-DJA
    Расширенный анализ джиттера и глазковых диаграмм
    $10 560.68
    - шт +
    Мэйнфрейм
    LPD64
    Низкопрофильный дигитайзер, 2U стоечного типа, ПП от 1 ГГц до 8 ГГц, 4 шт. SMA малошумящих входа, 12-бит АЦП, 25 Гвыб/с и 125 Мвыб длина записи
    По запросу
    - шт +
    Опции анализа последовательных шин данных
    6-SRAERO
    Запуск и анализ по Aerospace (MIL-STD-1553, ARINC 429)
    $3 384.68
    - шт +
    6-SRAUDIO
    Запуск и анализ по аудио шинам I2S, LJ, RJ, TDM
    $3 384.68
    - шт +
    6-SRAUTO
    Запуск и анализ по автомобильным шинам (CAN, CAN FD, LIN, FlexRay, and CAN symbolic decoding)
    $3 384.68
    - шт +
    6-SRAUTOEN1
    Анализ последовательной шины 100BASE-T1 Ethernet
    $9 125.48
    - шт +
    6-SRAUTOSEN
    Запуск и анализ по автомобильным датчикам (SENT)
    $3 384.68
    - шт +
    6-SRCOMP
    Запуск и анализ по RS-232/422/485/UART
    $3 384.68
    - шт +
    6-SREMBD
    Запуск и анализ по I2C, SPI
    $3 384.68
    - шт +
    6-SRENET
    Запуск и анализ Ethernet 10BASE-T, 100BASE-TX
    $3 384.68
    - шт +
    6-SRI3C
    Запуск и декодирование по MIPI I3C
    $3 384.68
    - шт +
    6-SRPM
    Запуск и анализ по SPMI
    $3 384.68
    - шт +
    6-SRSPACEWIRE
    Декодировка протокола SPACEWIRE (полоса пропускания >500 МГц, нет аппаратной части запуска)
    $3 384.68
    - шт +
    6-SRUSB2
    Анализ и запуск по сигналам последовательных шин USB (USB 2.0 низко-, полно- и высокоскоростных)
    $3 384.68
    - шт +
    Анализ памяти DDR
    6-DBDDR3
    Анализ и запуск по DDR3 и LPDDR3
    $6 434.48
    - шт +
    Библиотека

    Основные сведения о продукте

    Посмотреть более подробную информацию о возможностях этого продукта.

    Технические характеристики

    Отзывы
    Добавить отзыв
    Оцените товар:
    Ваше имя
    Достоинства

    Недостатки

    Комментарий

    Символы на картинке


    Тут еще никто ничего не писал, стань первым!
    Список просмотренных товаров пуст
    Список избранного пуст
    Ваша корзина пуста
    Помощь
    Ошибка на сайте? Выдели её и нажми Ctrl+Enter